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The application of vibrational selection rules is usually taught with respect to the vibrational motions of individual 
molecules. However, many of the materials studied by infrared or Raman spectroscopy are solids and even single 
crystals. Furthermore, some materials such as covalent or ionic solids have no molecular species associated with 
them. Consequently, there is a need to understand the application of group theory for the determination of spectro-
scopically active vibrational modes of crystals. The correlation method is ideal for that purpose.

The Correlation Method for the 
Determination of Spectroscopically 
Active Vibrational Modes in Crystals

Molecular Spectroscopy Workbench

T he determination of spectroscopically active vibra-
tional modes (Raman or infrared [IR]) is generally 
taught through the use of individual molecules in 

conjunction with group theory (1). Most spectroscopists 
have been taught at some time about the identification of 
point groups for a molecule and the use of character tables 
in conjunction with selection rules for the determination of 
Raman and IR active vibrational modes of molecules. That 
works fine when dealing with gases or liquids. However, very 
often we deal with solid-state materials for which there may 
be no molecular species—for example, TiO2, Si, C (graphene 
or diamond), or CaCO3. How then should we go about deter-
mining the Raman- or IR-active vibrational modes of such 
materials? This is where factor group analysis comes into 
play. If instead of a molecule, we consider a unit cell and the 
atoms located at specific sites therein, the factor group con-
sists of those symmetry elements and corresponding sym-
metry operations that when applied to the unit cell leave it in-
distinguishable from its original position. I think you can see 
how the factor groups of the 32 crystal classes correspond to 
the isomorphic point groups. Consequently, the same char-

acter tables of point groups used to determine the vibrational 
modes of molecules are also used to determine the Raman- 
and IR-active lattice vibrational modes of crystals (2,3).

The procedures for determining the Raman- and IR-active 
modes of crystals were first published many decades ago 
(4–7). Subsequently, several helpful books were published on 
these methods teaching spectroscopists to apply selection 
rules and factor group analysis to determine the Raman- and 
IR-active vibrational modes of crystals whose space groups 
were known along with the number of formula units per unit 
cell (8–10). I highly recommend the books by Ferraro and 
Ziomek (9) and Fateley and colleagues (10). The Fateley book 
works through many examples through which the authors 
teach the correlation method established by Halford and 
Hornig. I have used one example and the style of teaching the 
correlation method from the Fateley book for this installment.

Space-Group Identification  
and Crystallographic Information
The first step in determining the spectroscopically active vi-
brational modes of a crystal is to identify the Bravais space cell. 

Electronically reprinted from December 2015 

®



Many publications and crystallographic 
tables will list the number of molecules 
or formula units per crystallographic 
unit cell (Z). However, the correlation 
method requires knowledge of the num-
ber of molecules or formula units in the 
primitive or Bravais cell (ZB), which is 
equal to Z divided by the number of lat-
tice points (LP) determined by the desig-

nation of the space group (11). Examples 
of crystals with different numbers of lat-
tice points are shown in Table I.

We will use TiO2 in the anatase 
crystal form as our first example for 
determining the vibrational modes. 
This crystal form belongs to space 
group D19

4h (I41/amd) with four formula 
units and two lattice points per crystal-

lographic unit cell. Therefore, there 
are two formula units per Bravais cell 
(ZB = 2). Having identified the space 
group of a crystalline compound, the 
next step is to identify the site symme-
try of equivalent atoms in the Bravais 
cell. The site symmetry for equivalent 
atoms is a subgroup of the factor group 
describing the Bravais cell. The site 
symmetries for all of the space groups 
have been identified and tabulated (12), 
and that for D19

4h is shown in Table II.
We know from Table I that anatase 

TiO2 has two formula units per Bravais 
cell (ZB = 2), two Ti atoms, and four O 
atoms in the Bravais cell. From Table 
II, we see that the only site that accom-
modates two equivalent atoms is D2d, 
which then must be the site symmetry 
of the two Ti atoms. Regarding the O 
atoms, the C2h and C2v sites both ac-
commodate four equivalent atoms, 
and we must therefore choose between 
these two site symmetries. To choose 
correctly between our two options we 
must consult crystallographic tables to 
identify the proper Wyckoff site and 
consequently the site symmetry of the 
O atoms. We don’t have the space here 
to explain the procedure for using the 
tables listing Wyckoff sites, so we simply 
state that the site position of the O atom 
in anatase TiO2 corresponds to the site 
symmetry C2v. Those readers interested 
in the procedure of using the crystallo-
graphic tables to identify Wyckoff sites 
should consult chapter 2 of the book by 
Fateley and colleagues (9).

The Correlation Method—Site 
Symmetry to Factor Group
To make the correlation from site species 
to factor group species and the determi-
nation of the lattice vibrational modes, 
we need to understand the relationship 
between the translational and rotational 
degrees of freedom and site and factor 
group symmetry species. The number 
of translations in the site species γ is de-
fined as tγ and the number of rotations 
for the site species is Rγ. The degrees of 
freedom can take on the values of 0, 1, 2, 
and 3 depending upon the degeneracy 
and symmetry species; the values are 
taken directly from the x, y, and z col-
umn of the character table. The degrees 
of vibrational freedom for a given site 

Table I: Space groups and crystal cell information of some compounds

Crystal Space Group
Formula Units 
per Unit Cell 

(Z)

Lattice 
Points (LP)

Formula Units per 
Bravais Cell, ZB = (Z/LP)

ZrO2 C5
2ℎ 4 1 4

TiO2 (anatase) D19
4ℎ 4 2 2

TiO2 (rutile) D14
4ℎ 2 1 2

CaCO3  
(calcite)

D6
3d 6 (hexagonal) 3 2

CaCO3  
(aragonite)

D16
2ℎ 4 1 4

ZrGeO4 C6
4ℎ 4 2 2

Table II: Site symmetry for TiO2 anatase—space group D19
4ℎ

Site Symmetry Equivalent Atoms on the Site Sites of This Symmetry

2D2d (2) 2 2

2C2ℎ (4) 4 2

C2v (4) 4 1

2C2 (8) 8 2

Cs (8) 8 1

C1 (16) 16 ∞

Table III: Character table for the D2d point group

D2d E 2S4 C2 2C´2 2σd

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 -1 -1

B1 1 -1 1 1 -1 x2 – y2

B2 1 -1 1 -1 1 z xy

E 2 0 -2 0 0 x, y xz, yz

Table IV: Degrees of vibrational freedom for Ti atoms on site D2d

Site of Ti - D2d Translation tγ fγ = n • tγ

A1 0 0

A2 0 0

B1 0 0

B2 Tz 1 2

E Tx, Ty 2 4



species γ is given by the symbol fγ and is 
related to the number of translations in 
that same species by the following equa-
tion:

fγ = tγ ∙ n    [1]

where n is the number of equivalent 
atoms in the formula unit. Likewise, 
the degrees of rotational freedom fγR is 
given by

fγR = Rγ ∙ n    [2]

The contribution of degrees of freedom 
by each site species γ to a factor group 
species ζ is given by the symbol aγ, and 
its relationship to the vibrational degrees 
of freedom is given by the following ex-
pression:

fγ = aγΣCζ    [3]

where Cζ is the degeneracy of the factor 
group species ζ. The values of Cζ are 
equal to the degeneracies of the sym-
metry species; that is, 1 for the A and B 
species, 2 for the doubly degenerate E 
species, and 3 for the triply degenerate 
T species.

Spectroscopists often learn group 
theory for the purpose of determining 
the spectroscopically active vibrational 
modes of a molecule. Similarly, our goal 
here is to determine the irreducible rep-
resentation of the symmetry species of 
crystal lattice vibrations. To do that, we 
need to correlate the site symmetry spe-
cies of the equivalent sets of atoms to the 
factor group of the crystal. The irreduc-
ible representation of an equivalent set of 
atoms is given by

Γeqiv atoms =Σaζ ∙ ζ   [4]

where aζ equals the number of lattice 
vibrations of species ζ of the crystal 
factor group. Summing all of the ir-
reducible representations of the equiva-
lent atoms yields the total irreducible 
representation of the crystal.

Γcrystal = Γequiv atoms 1 + Γequiv atoms 2 + …  [5]

The irreducible representation of the 
crystal contains within it the so-called 
optical and acoustical vibrations or 

phonons. Therefore, we will have to 
subtract the irreducible representation 
of the acoustical phonons from the ir-
reducible representation of the crystal to 
achieve our final goal of determining the 
irreducible representation of the optical 
lattice vibrations:

Γvib = Γcrystal – Γacoustic   [6]

To determine Γcrystal we need to cor-
relate the site symmetries of the equiva-
lent atoms in the lattice to the factor 
group of the crystal. We have identified 

in the previous section the site symme-
tries of the Ti and O atoms in the TiO2 
anatase crystal. Next, we will treat the 
displacements of each atom on those 
sites, correlate the site species to the 
species of the factor group, and identify 
the lattice vibrations of the crystal. The 
procedure for determining the lattice 
vibrations is to work with one element 
in the chemical formula at a time. The 
site symmetry of the Ti atoms is D2d 
and so we turn to the D2d character 
table shown in Table III to identify 
those symmetry species associated with 

D2d Site group species D4h Factor group speciesC2’’ Correlation
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Figure 1: Correlation of the D2d site group species to the D4h factor group species.
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Figure 2: Correlation of the site group species D2d to the D4h factor group species for the 
determination of the vibrational modes involving the Ti atoms in the anatase TiO2 crystal lattice.



displacements along x, y, and z axes. 
The D2d site species that involve vibra-
tions along the x, y, and z directions are 
B2 and E. Our next step is to correlate 
the site species to the factor group spe-
cies from which we can determine the 
symmetry species of spectroscopically 
active vibrational modes.

Factor Group  
Analysis of Anatase TiO2
We begin our factor group analysis by 
considering the Ti atoms on site D2d. 
We know from Table II that there are 
two equivalent Ti atoms (n = 2) on site 
D2d and from Table III that the sym-
metry species of translation are B2 and 
E. Thus, the vibrational degrees of free-
dom of the two equivalent Ti atoms are 
2 for B2 and 4 for E. For clarity, these 
results and their relationship are sum-
marized in Table IV. Next, we want to 
correlate the site group species of the 
atom to the corresponding factor group 
species of the crystal, which is D4h for 
anatase TiO2 as indicated in Table I. 
To do this it is necessary to consult 
published correlation tables that can be 
found in several of the references cited 
here (9,10,13). A complete correlation 
of the D2d site group species to the D4h 

factor group species is shown in Figure 
1. However, we see from Table IV that 
the only the B2 and E site species have 
nonzero vibrational degrees of free-
dom. Therefore, we need only consider 
the correlation of those two site group 
species to the factor group species 
when determining the vibrations of the 
Ti atoms in the anatase TiO2 crystal.

Figure 2 shows the correlation of the 
site group species D2d to the D4h factor 
group species for the determination 
of the vibrational modes involving the 
Ti atoms in the anatase TiO2 crystal 
lattice. Examine carefully the values 
shown in the last three columns of this 
figure and you will see that aζ is equal 
to the sum of the number of the site 
species contributing to the number of 
factor group species:

aζ = Σγaγ   [7]

We have several ways of checking the 
accuracy of Figure 2 and confirming 
our work. The total degrees of freedom 
of our equivalent set of two Ti atoms 
is 3n = 6. The sum of the degrees of vi-
brational freedom (column 1, fγ) equals 
6. Also, the sum of the number of fac-
tor group species times the degeneracy 

of the species (ΣζaζCζ) equals 6; that 
is the sum of the products in columns 
aζ and Cζ equals 6. So our check of the 
degrees of vibrational freedom of the 
Ti atoms confirms our work and cor-
rectness of the values in Figure 2.

Next, we generate the irreducible 
representation of the symmetry species 
associated with the vibrations of the 
Ti atoms. Note that in Figure 2 the aζ 
value for each D4h factor group species 
is 1. Therefore, our D4h factor group 
contribution from the Ti atoms to the 
anatase TiO2 crystal is

ΓTi = B1g + A2u + Eg + Eu   [8]

Now that we have determined the fac-
tor group species associated with the 
vibration of Ti atoms, we must com-
plete our work by performing the same 
procedure for the O atoms. Referring 
back to Table II and the discussion 
regarding the selection of site symme-
tries, we see that the site group sym-
metry of the O atoms in anatase TiO2 
is C2v. Therefore, our correlation table 
should relate the site group species C2v 
to the D4h factor group species for the 
determination of the vibrational modes 
involving the O atoms in the anatase 
TiO2 crystal lattice. The procedure for 
the correlation of the O atom site group 
species to the factor group species is 
the same as that for the Ti atoms and 
we show the results in Figure 3. Note 
that for the O atoms not all of the aζ 
values are nonzero and that for the 
doubly degenerate E species the value 
is 2. The aζ values provide the corre-
sponding coefficients for the individual 
factor group species forming the irre-
ducible representation of the O atoms.

We should check our work as we did 
previously for the Ti atoms. The total 
degrees of freedom of our equivalent 
set of four O atoms is 3n = 12. The sum 
of the degrees of vibrational freedom 
(column 1, fγ) equals 12. Also, the sum 
of the number of factor group species 
times the degeneracy of the species 
(ΣζaζCζ) equals 12; that is the sum of 
the products in columns aζ and Cζ 
equals 12. So our check of the degrees 
of vibrational freedom of the O atoms 
confirms our work and the correctness 
of the values in Figure 3.
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Figure 3: Correlation of the site group species C2v to the D4h factor group species for the 
determination of the vibrational modes involving the O atoms in the anatase TiO2 crystal lattice.



Next, we generate the irreducible 
representation of the symmetry spe-
cies associated with the vibrations of 
the O atoms. Note that in Figure 3 not 
all of the aζ values corresponding to 
the individual D4h factor group species 
are nonzero. Therefore, our D4h factor 
group contribution from the O atoms 
to the anatase TiO2 crystal is con-
structed from only those species with 
nonzero values in Figure 3.

ΓO = A1g + B1g + 2Eg + A2u + B2u + 2Eu  [9]

Recall from equation 5 that the sum of 
all of the irreducible representations of 
the equivalent atoms yields the total ir-
reducible representation of the crystal.

ΓTiO2(anatase) =  ΓTi + ΓO = A1g + 2A2u + 
2B1g + B2u + 3Eg + 3Eu  [10]

However, we are not quite done yet. 
The irreducible representation of the 
TiO2 anatase crystal contains within 
it the so-called optical and acousti-
cal vibrations or phonons. Therefore, 
we still have to subtract the irreduc-
ible representation of the acoustical 
phonons from equation 10 to achieve 
our final goal of determining the ir-
reducible representation of the opti-
cal lattice vibrations. The acoustical 
modes have the same character as 
the translations in the factor group’s 
character table; here D4h. Consult-
ing the D4h character table shown 
in Table V we find that the X and 
Y translations correspond to the Eu 

species and the Z translation corre-
sponds to the A2u species.

Therefore,

Γacoust = A2u + Eu                 [11]

Subtraction of the acoustical phonons 
from ΓTiO2(anatase) will, according to 
equation 6, will give us the irreducible 
representation of the optical lattice vi-
brations of anatase TiO2.

Γvib =  A1g + 2A2u + 2B1g + B2u + 3Eg + 
3Eu – (A2u + Eu) = A1g + A2u + 
2B1g + B2u + 3Eg + 2Eu              [12]

and

Γvib =  A1g (Raman) + A2u (IR) + 2B1g 
(Raman) + B2u (inactive) + 3Eg 
(Raman) + 2Eu (IR)                   [13]

Therefore, a Raman spectrum of ana-
tase TiO2 should consist of one A1g, two 
B1g, and three Eg bands, whereas the 
IR absorption spectrum should consist 
of one A2u and two Eu bands. The B2u 
vibrational mode is silent.

It is important to realize that the 
exercise that we have completed has 
provided us with the irreducible rep-

resentation of the vibrational modes of 
only the anatase form of TiO2; that is, 
the representation does not apply to the 
other crystalline forms such as rutile 
or brookite. For example, here is the 
irreducible representation of the vibra-
tional modes of rutile TiO2.

ΓTiO2 rutile  = A1g (Raman) + A2g (in-
active) + A2u (IR) + B1g 
(Raman) + B1u (inactive) + 
B2g (Raman) + Eg (Raman) 
+ 3Eu (IR)                   [14]

A comparison of the anatase and rutile 
irreducible representations in Table VI 
reveals that the Raman and IR spectra 
should allow us to differentiate them 
by the number of bands and their sym-
metries.

The work that we have just done 
has hopefully demonstrated to you the 
importance and distinction between 
the determination of spectroscopically 
active vibrational modes of crystalline 
solids and the more familiar treatment 
of isolated molecules. The spectrosco-
pist must appreciate the dependence of 
IR absorption and Raman scattering 
on the material’s crystal structure. Fur-
thermore, a working knowledge of the 

Table V: Character table for the D4ℎ point group

D2d E 2C4 C2 2C 2́ 2C”2 i 2S4 σℎ 2σv 2σd
IR 

Activity
Raman 
Activity

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z

B1g 1 -1 1 1 -1 1 -1 1 1 -1 x2 – y2

B1u 1 -1 1 1 -1 -1 1 -1 -1 1

B2g 1 -1 1 -1 1 1 -1 1 -1 1 xy

B2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eg 2 0 -2 0 0 2 0 -2 0 0 xz, yz

Eu 2 0 -2 0 0 -2 0 2 0 0 x, y

Table VI: Comparison of the numbers of bands in the anatase and rutile TiO2 vibra-
tional spectra

A1g A2u B1g B2g Eg Eu

Anatase TiO2 1 Raman 1 IR 2 Raman — 3 Raman 2 IR

Rutile TiO2 1 Raman 1 IR 1 Raman 1 Raman 1 Raman 3 IR



selection rules and the correlation method allows the vibrational 
spectroscopist to use IR absorption and Raman spectroscopy to 
differentiate crystal forms in a fashion complementary to X-ray 
diffraction.

Conclusions
The correlation method for the determination of spectroscopically 
active vibrational modes in crystals has been presented. The cor-
relation of the site symmetry of equivalent atoms in the chemical 
formula to the factor group of the crystal allows one to build the ir-
reducible representation of the vibrational modes of the crystal one 
element at a time. The method has within itself checks on the cor-
rectness of the determinations based upon the degrees of freedom 
of the equivalent atoms and the vibrational degrees of freedom. 
The spectroscopist can use vibrational spectroscopy in conjunction 
with the correlation method to differentiate different crystalline 
forms of the same chemical compound.
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image analysis routines; such a combination 
seems possible.

What were the challenges in the statistical 
analysis?
The challenge within this framework is that the 
mathematics behind it are by no means trivial. 
Once this challenge is handled, the rest is com-
bining all measurement and analysis steps.

Do you believe that it would be possible to 
develop an automated virus determination 
method based on this approach?
Yes, I think it will be possible. The question is 
only on which height of the viral classification 
it will work. I would guess that the virus fam-
ily can be predicted from AFM measurements 
with a good accuracy, but further research has 
to prove that.

What are the next steps in your research?
The next steps will be to continue both exam-
ples noted above. Manuscripts on this work have 
already been submitted and I hope they wil l 
be accepted. Beside this, I am working on two 
more exciting topics: We are trying to extract 
relevant biomedical information from nonlinear 
multicontrast microscopic images, and we are 
working on standardization of Raman spectro-
scopic measurements. Both research topics are 
important investigations to bring the technol-
ogy (Raman spectroscopy and nonlinear multi-
contrast microscopy) into clinics as a standard 
procedure.
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