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Foreword

The drive toward fast, cost-effective, and reliable plastics manufacturing has been Moldflow’s
sole guiding goal since the company was founded over 25 years ago.

This focused determination led us to introduce many new and exciting tools into the market,
each contributing to achieving our goal in some way, whether by driving cost out of
production with reduced material usage or shortened cycle times, reducing mold delivery time
by minimizing re-work, or increasing the reliability of supply by enabling higher quality
products to be manufactured with greater surety in scheduling.

The artificially balanced, multi-cavity and family molds that are now commonplace were made
practical through the advent of our early simulation and runner balancing capabilities, which
were introduced in the late 1970s and early 1980s. As these tools evolved, we were able to
visualize, and therefore control, flow patterns and weld lines. This evolution continued until
we arrived in the 2000s with an array of sophisticated technology to control warpage, account
for heat transfer, predict core shift, adapt to new molding processes, and much more. From
traditional midplane technology to fully three-dimensional simulations, all our solutions are
well integrated into a solid-modeling design environment.

As the technology has evolved, so has its usage. When Moldflow simulation technology was
introduced, its primary purpose was to search for remedies to pre-existing molding problems.
It soon became evident that the insight the software provided to solve molding problems
would be better applied ahead of actual molding, during the design process. This
methodology, which we call “problem avoidance,” was the primary use for Moldflow
technology for the first 20 years of its existence.

For Moldflow, this created a unique challenge: to open the world of manufacturing to the
designers of parts and molds. What constitutes an ineffective design for molding may be
apparent to a seasoned processing engineer looking retrospectively at a poorly performing
tool, but how can design engineers use the CAE tools to visualize, diagnose and solve these
same issues ahead of time—without 20 years of molding experience? How can manufacturers
go further and use information that cannot be seen in the real molding process but is revealed
via simulation?

The key that unlocked this puzzle began its life as the Mo/dflow Design Philosophy. This is widely
viewed as the most important publication Moldflow has ever produced and has spawned
follow-on works on related subjects. Rather than provide insight into the operation of the
simulation tools, Moldflow Design Philosophy set forth simple principles that transcend any
specific software application and, as a result, are as valid with today's advanced simulation
products as they were over two decades ago.

In more recent years, another transition has occurred. The global imperative to drive down the
cost of manufacturing has led to the use of molding simulation as a cost optimization tool
rather than for problem avoidance. This change has increased the number of Moldflow users
by an order of magnitude across a far broader cross-section of the plastics industry. Greater
design-centricity leads to even more dependence on the plastics design principles, which can
be used to drive optimization.
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Despite a quarter of a century of technological advances, the golden years of CAE are ahead
of us as our industry takes a broader and more integrated view of what it takes to manage a
product’s life cycle. Moldflow is proud of its contributions to date and will continue to focus
on developing innovative technology coupled with practical design principles to deliver more
profitable manufacturing;

Roland Thomas
President & CEO, Moldflow Corporation
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Preface

About this Book

The origins of this book include not only Mo/dflow Design Principles, but also Warpage Design
Principles published by Moldflow, and the C-MOLD Design Guide. Collectively, these
documents are based on years of experience in the research, theory, and practice of injection
molding. These documents are now combined into this book: the Mo/dflow Design Guide. The
Moldflow Design Guide is intended to help practicing engineers solve problems they frequently
encounter in the design of parts and molds, as well as during production. This book can also
be used as a reference for training purposes at industrial and educational institutions.

How to Use this Book

This book has several chapters and appendices that deal with different stages of the design
process and provides background on the injection-molding process and plastic materials.

® The first three chapters introduce injection molding how polymers flow inside injection
molds and how molding conditions and injection pressure influence the process.

® Chapter 4 discusses Moldflow design principles and how they relate to making quality
parts.

® Chapter 5 introduces the finite element mesh technology used by Moldflow and how these
meshes influence the quality of the analysis.

® Chapters 6 to 9 introduce design concepts for the product, gates, runners, and cooling
systems.

® Chapter 10 introduces concepts relating to shrinkage and warpage and how Moldflow is
used to determine the amount of shrinkage and warpage a molded part will have and what
causes the warpage.

® Chapter 11 discusses the design procedure for analyzing injection-molded parts.
® Chapter 12 discusses major part defects found on injection-molded parts.

® TFinally the four appendices discuss basic injection-molding machine operation, process
control, variants of the standard injection-molding process, and plastic materials.

Benefits of Using CAE

The injection-molding industry has recognized that computer-aided engineering (CAE)
enhances an engineet's ability to handle all aspects of the polymer injection-molding process,
benefiting productivity, product quality, timeliness, and cost. This is illustrated by a wealth of



VIII Preface

literature and the ever-growing number of CAE software users in the injection-molding
industry.

CAE Predicts Process Behavior

Ideally, CAE analysis provides insight that is useful in designing parts, molds, and molding
processes. Without it, we rely on previous experience, intuition, prototyping, or molding trials
to obtain information such as polymer melt filling patterns, weld-line and air-trap locations,
required injection pressure and clamp tonnage, fiber orientation, cycle time, final part shape
and deformation, and mechanical properties of molded parts, just to name a few. Without
CAE analysis, other equally important design data, such as spatial distributions of pressure,
temperature, shear rate, shear stress, and velocity, are more difficult to obtain, even with a
well-instrumented mold. The process behavior predicted by CAE can help novice engineers
overcome the lack of previous experience and assist experienced engineers in pinpointing
factors that may otherwise be overlooked. By using CAE analysis to iterate and evaluate
alternative designs and competing materials, engineering know-how in the form of design
guidelines can be established relatively faster and more cost-effectively.

User Proficiency Determines the Benefits of CAE

While CAE technology helps save time, money, and raw material, as well as cuts scrap, reduces
the rejection rate, improves product quality, and gets new products to market faster, it is by no
means a panacea for solving all molding problems. Rather, it should be recognized that CAE
analysis is essentially a tool, designed to assist engineers instead of taking over their
responsibilities or replacing them. Like many other tools, the usefulness of CAE technology
depends on the proficiency of the user. The benefits mentioned above will not be realized
unless the CAE tool is used properly. To be more specific, the accuracy of CAE analysis
depends greatly on the input data provided by the user. In addition, the results generated by
CAE analysis need to be correctly and intelligently interpreted by the user before sound
judgments and rational decisions are made. Otherwise, users will simply be swamped by the
vast amount of data without getting any useful information.
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1 Polymer Flow Behavior in Injection Molds

® Phases of injection molding

® How do plastics flow?

1.1 Phases of Injection Molding

Any molder can prove that all the conditions and effects discussed in this chapter do indeed
occur during the injection molding process. While this knowledge alone can somewhat
improve quality, it is only with the use of Moldflow analysis during the initial design stage,
with the mold designed for the optimum filling pattern, that these effects can be controlled
and the full benefits obtained.

Flow technology is concerned with the behavior of plastics during the mold filling process. A
plastic part's properties depend on how the part is molded. Two parts having identical
dimensions and made from the same material but molded under different conditions will have
different stress and shrinkage levels and will behave differently in the field, meaning that they
are in practice two different parts.

The way the plastic flows into the mold is of paramount importance in determining the quality
of the part. The process of filling the mold can be distinctly analyzed with the ability to predict
pressure, temperature, and stress.

1.1.1 How Plastic Fills a Mold

This was investigated using a centrally gated mold shaped like a dinner plate with a thick rim
around the outside as shown in Figure 1.1. It was found that the injection molding process,
although complex, could be divided into three phases (we use the word phase to avoid
confusion with injection stage, as used with programmed injection).

i

-

Figure 1.1 Cross-section of disk mold used to investigate flow



2 Polymer Flow Behavior in Injection Molds

1111 Filling Phase

As the ram moves forward, it first moves at a steady speed as the plastic flows into the cavity.
This is the filling phase. This phase lasts until the mold is just filled. See Figure 1.2 and
Figure 1.3.

1.1.1.2 Pressurization Phase

The pressurization phase begins when the ram moves forward after the filling phase to bring
the mold up to pressure. When the mold is filled, the ram will slow down, but it still moves
quite some distance because plastics are very compressible materials. At injection molding
pressure, an extra 15% volume of material can be forced into the cavity. See Figure 1.2 and
Figure 1.3.

Although fluids are usually assumed to be incompressible, molten plastics have to be
considered to be more like a gas. The compressibility of plastics can be observed by blocking
off the nozzle and attempting to purge the barrel. The ram will jump forward when the
pressure is applied, but will spring back when the pressure is released.

1.1.13 Compensation Phase

After the pressurization phase, the ram still does not stop completely, continuing to creep
forward for some time. Plastics have a very large volumetric change of about 25% from the
melt to the solid. This can be seen in a short shot; the difference in volume between the
molding and the cavity is due to this volumetric change. See Figure 1.2 and Figure 1.3.

The ram moving forward to compensate for the volumetric change in the part is called the
compensation phase. As the volumetric change is 25% and, at the most, only an extra 15% can
be injected in the pressurization phase, there must always be some compensation phase.

! «—— Filling phase
‘o' Pressurization phase
‘«——' Compensation phase

Figure 1.2 Phases of injection molding
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Filling Pressurization Compensation

Figure 1.3 Phases of injection molding detail

1.1.2 The Filling Phase

A two-color technique best demonstrates this phase. After emptying the barrel of an injection-
molding machine, a small amount of red plastic was charged, followed by green plastic.

Consider the closed mold with the plastic front just starting to flow from the nozzle. The
plastic first fills the sprue and runner system, then enters the mold cavity itself, forming a small
bubble of molten plastic.

The skin of the plastic in contact with the cool mold freezes rapidly, while the central core
remains molten. When additional material is injected, it flows into this central core, displacing
the material already there, which then forms a new flow front. The flow of this displaced
material is 2 combination of forward flow and outward flow. The outward flow contacts the
wall, freezes, and forms the next section of skin while the forward flow forms the new molten
core. When more material enters the mold, it flows along a channel lined with these frozen
walls of plastic, illustrated in Figure 1.4.

This flow pattern is often called fountain flow or bubble flow because the flow front is like a
bubble being inflated with hot plastic from the center. The frozen layer is formed by the flow
front inflating, and so is subject to only a low shear stress and, therefore, has a very low level
of molecular orientation. Once it is frozen it cannot be orientated any further, so the frozen
layer in the finished part has a low level of orientation.

Hot plastic

Frozen layer

Heat loss to mold

Figure 1.4 Fountain flow and heat transfer
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Now, consider what happens upstream. Hot plastic is continuously flowing, bringing new hot
material along and generating significant frictional heat. At the same time, heat is being lost
through the frozen layer to the cold mold sutface.

Initially, the frozen layer is very thin, so heat is lost very rapidly. This results in more plastic
freezing and the frozen layer getting thicker, cutting down the heat flow. After a time, the
frozen layer will reach a thickness such that the heat lost by conduction is equal to the heat
input from plastic flow and frictional heating, i.e., an equilibrium condition is reached
(Figure 1.4).

It is interesting to do some calculations on the time taken to reach this state of equilibrium.
The actual rate of heat flow is very large in comparison with the small heat content of the
plastic in the frozen layer. The result is that equilibrium is reached very quickly, often in a time
measured in a few tenths of a second. As the total filling time is measured in seconds, the
frozen layer reaches an equilibrium state early in the filling cycle.

It is useful to think about how the thickness of this frozen layer will vary. If the injection rate
were slowed, less heat would be generated by friction along the flow path, with less heat input
from the flow. The heat loss would be at the same rate, and with less heat input the frozen
layer would grow in thickness. If the injection rate were raised, the frozen layer would be
thinner (Figure 1.5). Similarly, higher melt and mold temperatures would reduce the thickness
of the frozen layer. This can be seen experimentally using the two-color technique.

Slower Faster
injection VS. injection
rate rate
- = Frozen
|:| = Molten, cooler
- = Molten, hotter
Figure 1.5 Influence of injection rate on frozen layer thickness

1.1.2.1 Flow Shear Stress

It is easy to get confused between the various stress levels and orientation of the polymer. As
the plastic flows it is subject to shear stress, also called flow shear stress. This flow shear stress will
orient the material, i.e., cause the molecules to align themselves in the general direction of
flow.

The shear stress varies from a maximum at the outside, dropping off to zero at the center.

/}9 Shear stress is purely a function of force and area. This must not be confused with
shear rate, which is the rate of plastic sliding over the next layer. Shear rate is zero
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at the outer edge where the plastic is frozen, rises to a maximum just inwards of the
frozen layer, then drops toward the center, as shown in Figure 1.6.

Figure 1.6

Shear rate: Min Max

Shear rate distribution

If the flow were stopped and the plastic allowed to cool down very slowly, this orientation
would have time to relax, giving a very low level of residual orientation. On the other hand, if
the material were kept under stress and the plastic snap frozen, most of the orientation would
be trapped in the frozen plastic (Figure 1.7).

Figure 1.7

/\_/l“\/\

[EaY |
| (ﬂ )L Molecular orientation trapped
| /)/ L | | <« in pressurization phase
|| ! _‘(L | Gradual reduction of orientation
K/\ toward the center of the
- | | mold as stress levels are lower
\ A\ ||| | and the cooling rate is slower
Q | which allows more time for

| orientation to relax

|| IIIIII = Tension

7(\-7< = Compression
0

A< \\/\|l

Molecular orientation through the thickness of the part
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Now consider the orientation from the mold surface toward the center.

The frozen layer itself, formed with very little shear and therefore low orientation, immediately
freezes, "setting" the low level of orientation.

The layer of plastic just on the inside of the frozen layer is subject to maximum shear stress
and freezes the instant flow stops, trapping almost all the orientation.

This is the orientation pattern: the further toward the center, the more the shear stress drops
and the slower the rate of cooling, This allows more time for the level of orientation to relax,
so the residual orientation drops rapidly toward the center. Consider how this pattern will
affect the residual stress level. Oriented material (normally) will shrink more than nonoriented
material. On the inner surface of the original frozen layer, highly oriented material wants to
shrink a great deal, but it is prevented from doing so by the less-oriented material. The highly
oriented layer ends up being in tension, while the less-oriented material is in compression.

This residual stress pattern is a common cause of part warpage.

/f There is a connection—through orientation—between the shear stress during
filling (flow stress) and the residual stress in the final molded part. This means
shear stress during filling, shown on Moldflow plots, can be used as a design
parameter.

1.1.3 The Pressurization Phase

The pressurization phase—from the point of view of flow behavior—is very similar to the
filling phase. The flow rate may drop somewhat as the mold builds up to pressure, resulting in
an increase in the thickness of the frozen layer.

The main difference of course, is the increase in hydrostatic (isotropic) pressure. We shall see
in chapter 2, section 2.4 Effect of Molding Conditions, that hydrostatic pressure in itself does
not cause any residual stress.

114 The Compensation Phase

Compensating flow is unstable. Consider the plate molding again (see Figure 1.1). You would
think that plastic flowing uniformly through the thin diaphragm would top up the thick rim. In
practice, the plastic during the compensation phase flows in rivers that spread out like a delta,
as illustrated in Figure 1.8. This may seem surprising at first, but it can be explained by
temperature instability.
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Figure 1.8 River flow

1.14.1 Temperature Variation

There is always some variation in melt temperature coming from the barrel of the injection
machine. In exceptional cases, up to 40 °C variation has been measured using a high-speed
thermocouple..

1.1.4.2 Natural Instability

However slight the temperature variation, natural instability will amplify it. If, for example,
one part of the melt is slightly hotter than the rest, then the plastic flow in that area will be
slightly greater, bringing hotter material into the area and maintaining the temperature. If, on
the other hand, there is another area that is cooler, the flow will be less, so there will be less
heat input, and the plastic will get colder until it eventually freezes off.

However balanced the initial conditions, this natural instability will result in a river-type flow.
This is a very important consideration. The first material to freeze off will shrink early in the
cycle. By the time the material in the river flows freezes, the bulk of the material will have
already frozen off and shrinkage will have occurred. The rivers will shrink relative to the bulk
of the molding, and because they are highly orientated, shrinkage will be very high. The result
is high-stress tensile members throughout the molding, a common cause of warpage.

1.1.4.3 Optimum Part Quality

Most of the stress in plastic parts occurs during the compensation phase. By controlling flow
and minimizing stress, it is possible to design for optimum part quality. This important point is
at the heart of the Moldflow philosophy.

1.2 How Do Plastics Flow?

1.2.1 Material Behavior

Molten thermoplastics exhibit viscoelastic behavior, which combines flow characteristics of
both viscous liquids and elastic solids. When a viscous liquid flows, the energy that causes the
deformation is dissipated and becomes viscous heat. On the other hand, when an elastic solid
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is deformed, the driving energy is stored. For example, the flow of water is a typical viscous
flow, whereas the deformation of a rubber cube falls into the elastic category.

1.2.2 Deformation

In addition to the two types of material flow behavior, there are two types of deformation:
simple shear and simple extension (elongation), as shown in Figure 1.9 (a) and (b) below. The
flow of molten thermoplastics during injection-molding filling is predominantly shear flow, as
shown in Figure 1.9 (c), in which layers of matetial elements "slide" over each other. The
extensional flow, however, becomes significant as the material elements undergo elongation
when the melt passes areas of abrupt dimensional change (e.g., a gate region), as shown in
Figure 1.9 (d).

@ stress (b)
Stress 1===1 Stress
Velocity <« e
profile (‘ ’)
(c) (d)
Mold wall Mold wall
Moving
material
elements
Velocity
profile

Material elements at rest

I Material element before [ Material element during
deformation begins deformation

Figure 1.9 (a) Simple shear flow (b) Simple extensional flow (c) Shear flow in cavity filling
(d) Extensional flow in cavity filling

1.2.3 Viscoelastic Behavior

In response to an applied stress (force per unit area), molten thermoplastics exhibit
viscoelastic behavior, which combines characteristics of an ideal viscous liquid with those of
an ideal elastic solid. In other words, under certain conditions, molten thermoplastics behave
like a liquid and will continuously deform while shear stress is applied, as shown in
Figure 1.10. Upon the removal of the stress, however, the materials behave somewhat like an
elastic solid with partial recovery of the deformation, as shown in Figure 1.10 (b) and (c). This
viscoelastic behavior stems from the random-coil configuration of polymer molecules in the
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molten state, which allows the movement and slippage of molecular chains under the
influence of an applied load. However, the entanglement of the polymer molecular chains also
makes the system behave like an elastic solid upon the application and removal of the external
load. Namely, on removal of the stress, chains will tend to return to the equilibrium random-
coil state and thus will be a component of stress recovery. The recovery is not instantaneous
because of the entanglements still present in the system.

Initial shape Time = Dt Time =2 x Dt Final deformed
(shear stress (shear stress to shape
to be applied) be removed)
—>
(a) Viscous
liquid
d
—
(b) Elastic total
solid recovery
d
partial
e recovery
(c) Viscoelastic 7
polymer
melt

Figure 1.10 (a) Ideal viscous liquid deforms continuously under applied stress (b) Ideal elastic
solid deforms immediately upon the application of stress, but fully recovers when the
stress is removed (c) Molten thermoplastic deforms continuously under the applied
stress (like a viscous liquid), but also recovers partially from the deformation upon
removal of the applied stress (like an elastic solid)

1.24 Melt Shear Viscosity

1.24.1 What Is Shear Viscosity?

Melt shear viscosity is a material's resistance to shear flow. In general, polymer melts are highly
viscous because of their long molecular chain structure. The viscosity of a polymer melt ranges
from 2 to 3,000 Pa.s (water 10™-1 Pa.s, glass 1020 Pa.s). Viscosity can be thought of as the
thickness of a fluid, or how much it resists flow. Viscosity is expressed as the ratio of shear
stress (force per unit area) to the shear rate (rate change of shear strain), as shown in
Equation 1.1 and Figure 1.11:



