Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

~

: University of Notre Dame

MPI Tutorial
Part 2
High-Performance MPI

Laboratory for Scientific Computing
Fall 1998
http://www.lam-mpi.org/tutorials/nd/
lam@Ilam-mpi.org

N /

Fall 1998 1

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Section V \

Non-Blocking Communication

N /

Fall 1998 2

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Buffering Issues \

® Where does data go when you send it?

® One possibility is:

Process 1 Process 2

—Local Buffer

Local Buffer

The Network = B:

e This is not very efficient:
— Three copies in addition to the exchange of data between processes.

— Copies are “bad””

N /

Fall 1998 3

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Better Buffering \

e We prefer

Process 1 Process 2

A:

e But this requires that either that MP| _SENDnot return until the data has
been delivered or that we allow a send operation to return before completing

the transfer.

® |n the latter case, we need to test for completion later.

N /

Fall 1998 4

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Blocking and Non-Blocking Communication \

e So far we have used blocking communication:
— MPI_SENDdoes not complete until buffer is empty (available for reuse).

— MPI_RECWVdoes not complete until buffer is full (available for use).

e Simple, but can be prone to deadlocks:

Process0O Process 1

Send(1) Send(0)
Recv(1) Recv(0)

Completion depends in general on size of message and amount of system

buffering.

@ The semantics of blocking/non-blocking has nothing to do with when messages

are sent or recieved. The difference is when the buffer is free to re-use.

N /

Fall 1998 5

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Some Solutions to the Deadlock Problem \

e Order the operations more carefully:

Process0 Process 1

Send(1) Recv(0)
Recv(1) Send(0)
e Supply receive buffer at same time as send, with MPl_SENDRECYV

Process 0 Process 1

Sendrecv(l) Sendrecv(0)

N /

Fall 1998 6

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ More Solutions to the Deadlock Problem \

e Use non-blocking operations:

Process0 Process 1

lrecv(l) Irecv(0)
Isend(1) Isend(0)
Waitall Waitall

e Use MPI_BSEND

— Copies message into a user buffer (previously supplied) and returns

control to user program

— Sends message sometime later

N /

Fall 1998 7

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI’s Non-Blocking Operations \

® Non-blocking operations return (immediately) “request handles” that can be

waited on and queried:

MPI_ISEND(start, count, datatype, dest, tag, comm,
request)

MPI_IRECV(start, count, datatype, dest, tag, comm,
request)

MPI_WAIT(request, status)

e One can also test without waiting:

MPI_TEST(request, flag, status)

N /

Fall 1998 8

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Multiple Completions \

® |t is often desirable to wait on multiple requests.

e An example is a worker/manager program, where the manager waits for one
or more workers to send it a message.

MPI_WAITALL(count, array_of requests,
array of statuses)
MPI_WAITANY (count, array of requests, index, status)
MPI_WAITSOME(incount, array of requests, outcount,
array_of indices, array of statuses)

® There are corresponding versions of test for each of these.

N /

Fall 1998 9

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Probing the Network for Messages \
e MPl PROBEand MPI _IPROBE allow the user to check for incoming

messages without actually receiving them

e MPI IPROBE-returns “flag == TRUE " if there is a matching message
available. MPI_PROBEwill not return until there is a matching receive
available:

MPI1_IPROBE(source, tag, communicator, flag, status)
MPI_PROBE(source, tag, communicator, status)

@ It is typically not good practice to use these functions.

N /

Fall 1998 10

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

MPI Send-Receive \

The send-receive operation combines the send and receive operations in one

call.

The send-receive operation performs a blocking send and receive operation

using distinct tags but the same communicator.

A send-receive operation can be used with regular send and receive
operations.

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest,
sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

Avoids user having to order send/receive to avoid deadlock

Fall 1998

11

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ Non-Blocking Example: Manager —¢, 1 Worker
[* ... Only a portion of the code */
int flag = 0O;

MPI|_Status status;
double buffer[BIG_SIZE];
MPI_Request request;

[* Send some data */
MPI_Isend(buffer, BIG_SIZE, MPI_DOUBLE, dest, tag,
MPI_COMM_WORLD, &request);

[* While the send is progressing, do some useful work */
while (!flag && have more work to do) {

[* ...do some work... */

MPI_Test(&request, &flag, &status);

}
[* If we finished work but the send is still pending, wait */
if (Iflag)
MPI_Wait(&request, &status);
* ... *

N

~

Fall 1998

12

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ Non-Blocking Example: Manager —¢, 4 Workers

[* ... Only a portion of the code */
MPI_Status status[4];

double buffer[BIG_SIZE];

MPI_Request requests[4];

int i, flag, index, each_size = BIG_SIZE / 4;

[* Send out the data to the 4 workers */
for (i = 0; i < 4; i++4)
MPI_Isend(buffer + (i * each_size), each_size, MPI_DOUBLE, i + 1,
tag, MPI_COMM_WORLD, &requestsli]);

[* While the sends are progressing, do some useful work */
for i = 0; i < 4 && have_more_work to do; i++) {

[* ..do some work... */

MPI_Testany(4, requests, &flag, &index, &status[0]);

if (!flag)
i--
}
[* If we finished work but still have sends pending, wait for the rest*/
if (i < 4)
\ MPI_Waitall(4, requests, status);
* ... %

~

Fall 1998

13

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ The 5 Sends \

MPI_SEND Normal send. Returns after the message has been copied to a buffer

OR after the message “on its way”.

MPI_BSEND Buffered send. Returns after the message has been copied to an

internal MPI buffer (previously supplied by the user).

MPI_SSEND Synchronous send. Returns after the message reaches the

receiver.

MPI_RSEND Ready Send. The matching receive must be posted before the send

executes. Returns once the message has left the send buffer.

MPI_LISEND Immediate send. Returns immediately. You may not modify contents
of the message buffer until the send has completed (MPI_WAIT, MPI_TEST).

N /

Fall 1998 14

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Homework — Manager / Worker \

e Objective: Calculate an average in parallel workers

e Write a program to do the following:

— Process 0 (the manager) should only use non-blocking communications

— The manager should send 100 integers to every other processor (e.g.,

0...99to processor 1, 100...199 to processor 2, etc.)

— All other processors (the workers) should receive the integers, calculate

their sum, and return it to the manager

— The manager should receive the results from the workers and output the

average of all the numbers (i.e., 0 ... (size x 100) — 1)

/

Fall 1998

15

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Section VI

Persistent Communication

~

Fall 1998

16

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Persistent Communication Requests
Save arguments of a communication call
Take overhead out of subsequent calls (e.g., in a loop)

MPI_SENDINIT creates a communication request that completely

specifies a standard send operation

MPI_RECVINIT creates a communication request that completely

specifies a standard recv operation

Similar routines for ready, synchronous, and buffered send modes

~

Fall 1998

17

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

IN buf

IN count

IN datatype
IN dest

IN tag

IN comm
ouT request

MPI_SEND_INIT

MPI_SEND_INIT (buf, count, datatype, dest, tag, comm, request)

initial address of send buffer
number of elements sent
type of each element

rank of destination

message tag

communicator

communication request

~

Fall 1998

18

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

MPI_SEND_INIT bindings

~

int MPIl_Send_init(void* buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm,
MPI_Request *request)

Prequest Comm::Send_init(const void* buf, int count,
const Datatype& datatype, int dest,
Int tag) const

MPI_SEND _INIT(BUF, COUNT, DATATYPE, DEST, TAG,
COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG,

COMM, REQUEST, IERROR

N

Fall 1998

19

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

ouT

buf
count
datatype
source
tag
comm

request

MPI_RECV_INIT

MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)

Initial address of receive buffer
number of elements received

type of each element

rank of source or MPI_ANY_SOURCE
message tag or MPI_ANY _TAG
communicator

communication request

~

Fall 1998

20

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ MPI_RECV_INIT bindings

~

int MPIl_Recv_init(void* buf, int count,
MPI_Datatype datatype,
int source,
int tag, MPI_Comm comm,
MPI_Request *request)

Prequest Comm::Recv _init(void* buf, int count,
const Datatype& datatype,
Int source,
int tag) const

N

Fall 1998

21

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

MPI_RECV_INIT bindings (cont.)

~

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

REQUEST, IERROR

N

Fall 1998

22

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Persistent Communication Requests

@ To start a send or receive:

MPI_START (REQUEST, IERR)
MPI_START_ALL (COUNT, REQUESTARRAY, IERR)

on status

~

® The wait and test routines can be used to block until completion, or to check

Fall 1998

23

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI_START \

MPI_START (request)

INOUT request communication request

int MPI_Start(MPl_Request *request)
void Prequest::Start()

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

N /

Fall 1998 24

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ MPI_START ALL

MPI_STARTALL(count, array_of_requests)

IN count list length

INOUT array_of_requests array of requests

N

~

Fall 1998

25

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI_START _ALL bindings \

int MPI_Startall(int count,
MPI_Request *array of requests)

static void Prequest::Startall(int count,
Prequest array of requests[])

MPI_STARTALL(COUNT, ARRAY_OF REQUESTS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), IERROR

N /

Fall 1998 26

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Homework - Persistent Communication
e Rewrite the ring program with persistent communication requests.

e Write a program to do the following:
— Process 0 should read in a single integer (> 0) from standard input
— Use MPI send and receive to pass the integer around a ring

— Use the user-supplied integer to determine how many times to pass the

message around the ring
— Process 0 should decrement the integer each time it is received.

— Processes should exit when they receive a “0”.

N

~

Fall 1998

27

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Section VI

User-Defined Datatypes

~

Fall 1998

28

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Datatypes and Heterogeneity \

e MPI datatypes have two main purposes:

— Heterogeneity — parallel programs between different processors

— Noncontiguous data — structures, vectors with non-unit stride, etc.
e Basic datatypes, corresponding to the underlying language, are predefined.

® The user can construct new datatypes at run time; these are called derived

datatypes.
e Datatypes can be constructed recursively

e Avoids packing/unpacking

N /

Fall 1998 29

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Datatypes in MPI \

Elementary: Language-defined types (e.g., MPI_INT or
MPI_DOUBLE PRECISION

Vector: Separated by constant “stride”
Contiguous: Vector with stride of one
Hvector: Vector, with stride in bytes
Indexed: Array of indices

Hindexed: Indexed, with indices in bytes

Struct: General mixed types (for C structs etc.)

N /

Fall 1998 30

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI C Datatypes Revisited \

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long Int

MPI_UNSIGNEDCHAR | unsigned char
MPI_UNSIGNEDSHORT| unsigned short int
MPI_UNSIGNED unsigned int

N /

Fall 1998 31

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI C Datatypes Revisited (cont.) \

MPI datatype C datatype
MPI_UNSIGNEDLONG| unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONGDOUBLE long double
MPI_BYTE

MPI_PACKED

N /

Fall 1998 32

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI| C++ Datatypes \

MPI datatype C++ datatype
MPI.:CHAR signed char
MPI.:SHORT signed short int
MPIINT signed int
MPI.:LONG signed long int

MPI.:UNSIGNED _CHAR | unsigned char
MPI::UNSIGNED _SHORT| unsigned short int
MPI.:UNSIGNED unsigned int

N /

Fall 1998 33

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI C++ Datatypes (cont.) \

MPI datatype C++ datatype
MPI.:UNSIGNED _LONG| unsigned long int
MPI::FLOAT float
MPI::DOUBLE double
MPI.:LONG _DOUBLE long double
MPI::BYTE

MPI::PACKED

N /

Fall 1998 34

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ MPI Fortran Datatypes Revisited \

MPI datatype Fortran datatype
MPI_INTEGER INTEGER

MPI_REAL REAL
MPI_DOUBLEPRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER
MPI_BYTE

MPI_PACKED

N /

Fall 1998 35

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Type Contiguous \

e Simplest derived data type

e Constructs a type map consisting of replications of a datatype in contiguous

locations.

N /

Fall 1998

36

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

mPI_TYPE_CONTIGUOUS(count, oldtype, newtype) \
IN count replication count (nonnegative integer)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

int MPI_Type_contiguous(int count,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Datatype Datatype::Create contiguous(int count) const

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

N /

Fall 1998 37

Laboratory for Scientific Computing

MPI Tutorial

-~

The exact code for this is

N

Vectors

29 | 30

31

32

33

34

35

22 | 23

24

25

26

27

28

15 | 16

17

18

19

20

21

10

11

12

13

14

3

4

5

newtype);

MPI_TYPE_COMMIT(newtype);

To specify this column (in row order), we can use

MPI_TYPE_VECTOR(count, blocklen,

stride, oldtype,

MPI_TYPE_VECTOR(5, 1, 7, MPI_DOUBLE, newtype);
MPI_TYPE_COMMIT(newtype);

~

/

Fall 1998

University of Notre Dame

38

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Extents \

® The extent of a datatype is (normally) the distance between the first and last

member (in bytes).

Memory locations specified by datatype

EXTENT
LB UB

e You can set an artificial extent by using MP1_UBand MPI_LB in
MPI_TYPE STRUCT

N /

Fall 1998 39

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Extent and Size

® The size returns the total size, in bytes, of the entries in the type signature

associated with datatype; i.e., the total size of the data in a message that

would be created with this datatype.

e What is the size of the vector in the previous example?

e \What is the extent?

~

Fall 1998

40

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

Example: C Structures \

struct {
char display[50]; /* Name of display */
int maxiter; /* max # of iterations */
double xmin, ymin; /* lower left corner of rectangle */
double xmax, ymax; [* upper right corner */
int width; /* of display in pixels */
int height; /* of display in pixels */
} cmdline;

/* set up 4 blocks */

int blockcounts[4] = {50,1,4,2};
MPI_Datatype types[4];
MPI_Aint displs[4];

MPI_Datatype cmdtype;

/* initialize types and displs with addresses of items */
MPI_Address(&cmdline.display, &displs[0]);
MPI_Address(&cmdline.maxiter, &displs[1]);
MPI_Address(&cmdline.xmin, &displs[2]);
MPI_Address(&cmdline.width, &displs[3]);
types[0] = MPI_CHAR,;
types[1l] = MPLINT;
types[2] = MPI_DOUBLE;
types[3] = MPIL_INT;
for i = 3; i >= 0; i-

displs[i] -= displs|[O0];
MPI_Type_struct(4, blockcounts, displs, types, &cmdtype);
MPI_Type_commit(&cmdtype);

Fall 1998 41

Laboratory for Scientific Computing MPI Tutorial

/ Structures

University of Notre Dame

® Structures are described by arrays of
— number of elements (array_of len)
— displacement or location (array_of displs)
— datatype (array_of types)

MPI_Type_struct(count, array of len,
array_of displs,
array of types, &newtype);

N

Fall 1998

~

42

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ C++ Objects

e Objects are combinations of data and functions
— Literally, a C struct with function pointers
— Can associate actions with functions on the object (e.g., construction,
destruction)
e MPI is only built upon moving data, not functions
— MPI can only “fill” an object’s data, just like a Struct

— Does not automatically perform any actions or functions on the object

N

~

Fall 1998

43

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ C++ Objects \

e Ramifications:

— Objects have to be instantiated on receiving side before they can be

received

— A member (or friend) function must receive the data buffer and “fill” the
object (and vice versa for sending; a member/friend function must

marshall the data and send the buffer)

— MPI does not combine the receive and instantiation (nor the send with

destruction)
— Other products can literally move objects from one process to another
(SOM, CORBA, DCOM), but are more “distributed” rather than “parallel”
e Alternatives:

— Object Oriented MPI (OOMPI):

\ http://www.osl.iu.edu/research/oompi/ /

Fall 1998

44

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

N

Vectors Revisited

® This code creates a datatype for an arbitrary number of elements in a row of

an array stored in Fortran order (column first).

Int blens[2], displs[2];
MPI_Datatype types[2], rowtype;

blens[0] = 1,
blens[1] = 1,
displs[0] = O;

displs[1] = number_in_column * sizeof(double);
types[0] = MPI_DOUBLE;

types[l] = MPI_UB;

MPI_Type_ struct(2, blens, displs, types, &rowtype);
MPI_Type commit(&rowtype);

e To send N elements, you can use

MPI_Send(buf, n, rowtype, ...);

~

Fall 1998

45

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Structures Revisited \

N

Fall 1998

® When sending an array of structures, it is important to ensure that MPI and
the C compiler have the same value for the size of each structure.

e Most portable way to do this is to use MP1_UBin the structure definition for
the end of the structure. In the previous example, this would be:

/* initialize types and displs with addresses of items */

MPI_Address(&cmdline.display, &displs[0]);
MPI_Address(&cmdline.maxiter, &displs[1]);
MPI_Address(&cmdline.xmin, &displs[2]);
MPI_Address(&cmdline.width, &displs[3]);

MPI_Address(&cmdline+1, &displs[4]);
types[0] = MPI_CHAR,;

types[1l] = MPL_INT;

types[2] = MPI_DOUBLE;

types[3] = MPL_INT;

types[4] = MPI_UB;

for (i = 4; i >= 0; i-)
displs[i] -= displs[0];

MPI_Type_struct(5, blockcounts, displs, types, &cmdtype);
MPI_Type_commit(&cmdtype);

46

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

e By moving the UB inside the data, you can interleave data.

N

e Consider the matrix

Torank 0 —

Torank 1 —

Interleaving Data

0 8 16 24 32 40 48 56
1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63

e \We wish to send 0-3,8-11,16-19, and 24-27 to
28-31 to rank 1; etc.

e How can we do this with MPl_SCATTER\

<— Torank 2

<— Torank 3

~

rank 0; 4-7,12-15,20-23, and

Fall 1998

47

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

N

An Interleaved Datatype

e To define a block of this matrix (in C):

MPI_Type_vector(4, 4, 8, MPI_DOUBLE, &vec);

e To define a block whose extent is just one entry:

blens[0] = 1; blens[1l] = 1,

types[0] = vec; types[l] = MPI_UB;

displs[0] = O; displs[1] = sizeof(double);

MPI_Type_struct(2, blens, displs, types,
&block);

~

Fall 1998

48

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

N

Scattering a Matrix

e We set the displacements for each block as the location of the first element in

the block.

e This works because MP|_SCATTERMises the extents to determine the

start of each piece to send.

scdispls[0] = 0; sendcounts[0] =
scdispls[1] = 4; sendcounts[l] =
scdispls[2] = 32; sendcounts[2] =
scdispls[3] = 36; sendcounts[3] =

MPI_Scatterv(sendbuf, sendcounts, scdispls, block,
recvbuf, 16, MPI_DOUBLE, 0,
MPI_COMM_WORLD);

~

Fall 1998

49

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Lab - Datatypes \

Create a datatype called submatrix that consists of elements in alternate rows

and alternate columns of the given original matrix.

Use MPI_SENDRECYV to send the submatrix from a process to itself and print
the results. To test this program you can run the program on just one

pProcessor.

For example, if the given matrix is:

1 2 3 4 5 6
/7 8 9 10 11 12
13 14 15 16 17 18

The submatrix created should look like:

1 3 5
13 15 17

Fall 1998

50

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Section VI \

MPI Idioms for
High-performance

N /

Fall 1998 51

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Latency and Bandwidth

e Latency [=] time

— A measure of a duration of time for an operation to transpire
— A measure of a “fixed cost” associated with an operation

— Includes overhead costs in software and hardware

~

— Zero message latency or “startup time”. Time to send an empty message

e Bandwidth [=] bytes/time

— A measure of a rate of transfer
— A measure of the size dependent cost of an operation
— Asymptotic bandwidth is the rate for sending an infinitely long message

— Contended bandwidth is the actual bandwidth of a network considering

congestion from multiple transfers

/

Fall 1998

52

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Latency and Bandwidth \

10" ¢

[
o
N
T

155Mbps

Cost (milliseconds)

[Eny
o

100Mbps

-1]] e]]]

10 10 10 10° 10 10 10
Message Size (bytes)

Fall 1998 53

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ Message Size and Frequency
® Size and frequency are not inter-changeable

e The total cost of sending a message is

Ttotal = Cz_’latency + N/BCL’I’Ld”UJ’Ldth

® The choice of size and frequency affects performance

e Multiple small messages should be collected into larger messages

N

~

Fall 1998

54

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

-~

N

Message Size and Frequency

e Cluster-based parallel machines:

— Favor fewer and larger message because latency is high

— For example, 100Mbps switched ethernet, all messages under

approximately 1K bytes take the same amount of time to transmit

e “Real” parallel machines:

— Latency is lower (faster interconnection between CPUS)

— Tradeoff point may be different

~

Fall 1998

55

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

N

exchange a data item with its left and right neighbors.

Rank O

/-

A 3

Serialization

Rank 1

\

P 3

Time=1

Time=2

Rank 2

\

P 3

e Consider the following communication pattern — we wish each process to

Rank 3

\

/

Time=3

~

Fall 1998

56

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

e One approach

— Everyone sends right

— Everyone sends left

e Nice, parallel approach (?)

N

Serialization

— Everyone receives from the left

— Everyone receives from the right

~

Fall 1998

57

Laboratory for Scientific Computing MPI Tutorial

/ Serialization

University of Notre Dame

e MPI implementation (code snippet)

If (my _rank != size - 1)
MPI_Send(right);

if (my_rank != 0)
MPI_Recv(left);

if (my_rank != 0)
MPI1_Send(left);

If (my _rank != size - 1)
MPI1_Recv(right);

e What is wrong with this approach?

N

Fall 1998

~

58

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

Rank O

Avoiding Serialization

e Creates a daisy-chain effect

Rank 1

e |nitially there will only be one receive posted

Rank 2

® The suggested approach may induce serialization of the communication

® The sends may not complete until there is a matching receive (why?)

e \What would happen if we wanted to exchange data around a ring?

Rank 3

/~

*

2 %

A Y

\ /7

HZ Y

\

/

N

Time=1

Time=2

Time=3

~

Fall 1998

59

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ A Better Implementation

e Code snippet:

If (my_rank !'= 0)
MPI_Irecv(left);

If (my _rank != size - 1)
MPI_Irecv(right);

If (my _rank != size - 1)
MPI_Send(right);

if (my_rank != 0)
MPI_Send(left);

[* ... wait for recvs to complete */

N

Fall 1998

~

60

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ A Better Implementation \

e Why is this better?

e How can you receive data before it is sent?

N /

Fall 1998 61

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame

/ Overlapping Communication and Computation \

® There is lots of “wasted” time spent waiting for sends and receives to

complete
® Better to do some computation while waiting
e Use non-blocking sends and receives

e BUT: Be aware that communication is not guaranteed to take place in the
background with non-blocking operations

N /

Fall 1998 62

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

N

Overlapping Communication and Computation
Post non-blocking (perhaps persistent) receive
Post (non-blocking, persistent) send

While receive has not completed

e do some computation
Handle received message

Wait for sent messages to complete

~

Fall 1998

63

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ Overlapping Communication and Computation

e What MPI calls would you use for each step above?
e \Why do we want to wait for sent messages to complete?

e \What does it mean for the sent messages to complete?

N

Fall 1998

~

64

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

-~

N

Overlapping Communication and Computation

e Code snippet:

If (my_rank !'= 0)
MPI_Irecv(left);
If (my _rank != size - 1)
MPI_Irecv(right);
If (my_rank != size - 1)
MPI_Isend(right);
if (my_rank != 0)
MPI_Isend(left);
[* Do some computation */
[* ... wait for sends and recvs to complete */

~

Fall 1998

65

Laboratory for Scientific Computing MPI Tutorial

University of Notre Dame

/ Non-blocking “Gotchas”
e Be careful about abusing number of outstanding asynchronous
communication requests
— Causes more overhead in the MPI layer
— Buffers for the pending sends and receives can be expensive

memory-wise, which will also hurt performance

@ Make sure you understand the difference between non-blocking

communication and background communication operations.

N

~

Fall 1998

66

Laboratory for Scientific Computing

MPI Tutorial

University of Notre Dame

-~

— Repeat until done

N

Lab - Idioms

e Implement the very first lab exercise

e Algorithm (for each processor)
— Initialize £ = number of neighbors

— Update x with average of neighbor’s values of x

~

Fall 1998

67

