
Red Hat Enterprise Linux 8

Security hardening

Enhancing security of Red Hat Enterprise Linux 8 systems

Last Updated: 2025-04-03

Red Hat Enterprise Linux 8 Security hardening

Enhancing security of Red Hat Enterprise Linux 8 systems

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the processes and practices for securing Red Hat Enterprise Linux servers and workstations
against local and remote intrusion, exploitation, and malicious activity. By using these approaches
and tools, you can create a more secure computing environment for the data center, workplace, and
home.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. SECURING RHEL DURING AND RIGHT AFTER INSTALLATION
1.1. DISK PARTITIONING
1.2. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
1.3. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
1.4. POST-INSTALLATION PROCEDURES
1.5. DISABLING SMT TO PREVENT CPU SECURITY ISSUES BY USING THE WEB CONSOLE

CHAPTER 2. SWITCHING RHEL TO FIPS MODE
2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS MODE

RHEL in FIPS mode
Switching to FIPS mode after the installation
FIPS in crypto-policies

2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
2.3. SWITCHING THE SYSTEM TO FIPS MODE
2.4. ENABLING FIPS MODE IN A CONTAINER
2.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-2

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
3.2. CHANGING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY
3.3. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER
RELEASES
3.4. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE
3.5. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

3.5.1. Examples of opting out of the system-wide cryptographic policies
3.6. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH SUBPOLICIES
3.7. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE CRYPTOGRAPHIC POLICY
3.8. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY
3.9. ENHANCING SECURITY WITH THE FUTURE CRYPTOGRAPHIC POLICY USING THE CRYPTO_POLICIES
RHEL SYSTEM ROLE
3.10. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

4.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
4.2. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD
4.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH CERTIFICATES ON SMART CARDS
4.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
4.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
4.6. ADDITIONAL RESOURCES

CHAPTER 5. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT
5.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT
5.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND POLKIT
5.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT AUTHORIZATION TO PC/SC
5.4. ADDITIONAL RESOURCES

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
6.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
6.2. VULNERABILITY SCANNING

6.2.1. Red Hat Security Advisories OVAL feed

6

7
7
7
8
8
8

10
10
10
10
11
11

12
13
14

16
16
18

19
19
21
22
23
25
25

26
29

30
30
30
32
32
33
33

34
34
34
36
37

38
38
39
39

Table of Contents

1

. .

. .

. .

6.2.2. Scanning the system for vulnerabilities
6.2.3. Scanning remote systems for vulnerabilities

6.3. CONFIGURATION COMPLIANCE SCANNING
6.3.1. Configuration compliance in RHEL
6.3.2. Possible results of an OpenSCAP scan
6.3.3. Viewing profiles for configuration compliance
6.3.4. Assessing configuration compliance with a specific baseline

6.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
6.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING AN SSG ANSIBLE
PLAYBOOK
6.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE

6.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
6.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH

6.8.1. Using SCAP Workbench to scan and remediate the system
6.8.2. Customizing a security profile with SCAP Workbench
6.8.3. Additional resources

6.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN
INSTALLATION

6.9.1. Profiles not compatible with Server with GUI
6.9.2. Deploying baseline-compliant RHEL systems using the graphical installation
6.9.3. Deploying baseline-compliant RHEL systems using Kickstart

6.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
6.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC
BASELINE
6.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8
6.13. ADDITIONAL RESOURCES

CHAPTER 7. CHECKING INTEGRITY WITH AIDE
7.1. INSTALLING AIDE
7.2. PERFORMING INTEGRITY CHECKS WITH AIDE
7.3. UPDATING AN AIDE DATABASE
7.4. FILE-INTEGRITY TOOLS: AIDE AND IMA
7.5. ADDITIONAL RESOURCES

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
8.1. THE KERNEL INTEGRITY SUBSYSTEM
8.2. TRUSTED AND ENCRYPTED KEYS
8.3. WORKING WITH TRUSTED KEYS
8.4. WORKING WITH ENCRYPTED KEYS
8.5. ENABLING IMA AND EVM
8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS
9.1. LUKS DISK ENCRYPTION
9.2. LUKS VERSIONS IN RHEL
9.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
9.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
9.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
9.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
9.7. CONFIGURING THE LUKS PASSPHRASE IN THE WEB CONSOLE
9.8. CHANGING THE LUKS PASSPHRASE IN THE WEB CONSOLE
9.9. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE

40
41
41
41

42
43
44
45

46

47
48
49
49
51

53

53
53
54
55
56

57
58
70

72
72
72
73
74
74

75
75
76
76
78
79
82

84
84
85
86
87
89
91

92
93
94

Red Hat Enterprise Linux 8 Security hardening

2

. .

. .

. .

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-
BASED DECRYPTION

10.1. NETWORK-BOUND DISK ENCRYPTION
10.2. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
10.3. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
10.4. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY IN THE WEB CONSOLE
10.5. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
10.6. CONFIGURING NBDE CLIENTS FOR AUTOMATED UNLOCKING OF LUKS-ENCRYPTED VOLUMES
10.7. CONFIGURING NBDE CLIENTS WITH STATIC IP CONFIGURATION
10.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING A TPM 2.0
POLICY
10.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
10.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING KICKSTART

10.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE

10.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
High-available NBDE using Shamir’s Secret Sharing

Example 1: Redundancy with two Tang servers
Example 2: Shared secret on a Tang server and a TPM device

10.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
10.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS BY USING
NBDE
10.15. DEPLOYING TANG AS A CONTAINER
10.16. CONFIGURING NBDE BY USING RHEL SYSTEM ROLES

10.16.1. Using the nbde_server RHEL system role for setting up multiple Tang servers
10.16.2. Setting up Clevis clients with DHCP by using the nbde_client RHEL system role
10.16.3. Setting up static-IP Clevis clients by using the nbde_client RHEL system role

CHAPTER 11. AUDITING THE SYSTEM
11.1. LINUX AUDIT
11.2. AUDIT SYSTEM ARCHITECTURE
11.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
11.4. STARTING AND CONTROLLING AUDITD
11.5. UNDERSTANDING AUDIT LOG FILES
11.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES
11.7. DEFINING PERSISTENT AUDIT RULES
11.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH STANDARDS
11.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
11.10. DISABLING AUGENRULES
11.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES
11.12. MONITORING USER LOGIN TIMES WITH AUDIT
11.13. ADDITIONAL RESOURCES

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD
12.1. INTRODUCTION TO FAPOLICYD
12.2. DEPLOYING FAPOLICYD
12.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST
12.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
12.5. ENABLING FAPOLICYD INTEGRITY CHECKS
12.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
12.7. PREVENTING USERS FROM EXECUTING UNTRUSTWORTHY CODE BY USING THE FAPOLICYD RHEL
SYSTEM ROLE
12.8. ADDITIONAL RESOURCES

97
97
99

100
102
105
106
108

109
111

112

113
114
114
114
115
115

116
116
118
118
119
121

124
124
125
126
127
128
132
133
133
134
135
135
137
138

140
140
141

143
144
147
147

150
151

Table of Contents

3

. .CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
13.1. USBGUARD
13.2. INSTALLING USBGUARD
13.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI
13.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
13.5. CREATING A CUSTOM POLICY FOR USB DEVICES
13.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
13.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
13.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
13.9. ADDITIONAL RESOURCES

152
152
152
153
154
155
156
158
159
159

Red Hat Enterprise Linux 8 Security hardening

4

Table of Contents

5

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Security hardening

6

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. SECURING RHEL DURING AND RIGHT AFTER
INSTALLATION

Security begins even before you start the installation of Red Hat Enterprise Linux. Configuring your
system securely from the beginning makes it easier to implement additional security settings later.

1.1. DISK PARTITIONING

The recommended practices for disk partitioning differ for installations on bare-metal machines and for
virtualized or cloud environments that support adjusting virtual disk hardware and file systems
containing already-installed operating systems.

To ensure separation and protection of data on bare-metal installations, create separate partitions for
the /boot, /, /home, /tmp, and /var/tmp/ directories:

/boot

This partition is the first partition that is read by the system during boot up. The boot loader and
kernel images that are used to boot your system into RHEL 8 are stored in this partition. This
partition should not be encrypted. If this partition is included in / and that partition is encrypted or
otherwise becomes unavailable then your system is not able to boot.

/home

When user data (/home) is stored in / instead of in a separate partition, the partition can fill up
causing the operating system to become unstable. Also, when upgrading your system to the next
version of RHEL 8 it is a lot easier when you can keep your data in the /home partition as it is not be
overwritten during installation. If the root partition (/) becomes corrupt your data could be lost
forever. By using a separate partition there is slightly more protection against data loss. You can also
target this partition for frequent backups.

/tmp and /var/tmp/

Both the /tmp and /var/tmp/ directories are used to store data that does not need to be stored for a
long period of time. However, if a lot of data floods one of these directories it can consume all of your
storage space. If this happens and these directories are stored within / then your system could
become unstable and crash. For this reason, moving these directories into their own partitions is a
good idea.

For virtual machines or cloud instances, the separate /boot, /home, /tmp, and /var/tmp partitions are
optional because you can increase the virtual disk size and the / partition if it begins to fill up. Set up
monitoring to regularly check the / partition usage so that it does not fill up before you increase the
virtual disk size accordingly.

NOTE

During the installation process, you have an option to encrypt partitions. You must supply
a passphrase. This passphrase serves as a key to unlock the bulk encryption key, which is
used to secure the partition’s data.

1.2. RESTRICTING NETWORK CONNECTIVITY DURING THE
INSTALLATION PROCESS

When installing RHEL 8, the installation medium represents a snapshot of the system at a particular
time. Because of this, it may not be up-to-date with the latest security fixes and may be vulnerable to
certain issues that were fixed only after the system provided by the installation medium was released.

CHAPTER 1. SECURING RHEL DURING AND RIGHT AFTER INSTALLATION

7

When installing a potentially vulnerable operating system, always limit exposure only to the closest
necessary network zone. The safest choice is the “no network” zone, which means to leave your machine
disconnected during the installation process. In some cases, a LAN or intranet connection is sufficient
while the Internet connection is the riskiest. To follow the best security practices, choose the closest
zone with your repository while installing RHEL 8 from a network.

1.3. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED

It is best practice to install only the packages you will use because each piece of software on your
computer could possibly contain a vulnerability. If you are installing from the DVD media, take the
opportunity to select exactly what packages you want to install during the installation. If you find you
need another package, you can always add it to the system later.

1.4. POST-INSTALLATION PROCEDURES

The following steps are the security-related procedures that should be performed immediately after
installation of RHEL 8.

Update your system. Enter the following command as root:

yum update

Even though the firewall service, firewalld, is automatically enabled with the installation of
Red Hat Enterprise Linux, it might be explicitly disabled, for example, in the Kickstart
configuration. In such a case, re-enable the firewall.
To start firewalld enter the following commands as root:

systemctl start firewalld
systemctl enable firewalld

To enhance security, disable services you do not need. For example, if no printers are installed
on your computer, disable the cups service by using the following command:

systemctl disable cups

To review active services, enter the following command:

$ systemctl list-units | grep service

1.5. DISABLING SMT TO PREVENT CPU SECURITY ISSUES BY USING
THE WEB CONSOLE

Disable Simultaneous Multi Threading (SMT) in case of attacks that misuse CPU SMT. Disabling SMT
can mitigate security vulnerabilities, such as L1TF or MDS.

IMPORTANT

Disabling SMT might lower the system performance.

Prerequisites

You have installed the RHEL 8 web console.

Red Hat Enterprise Linux 8 Security hardening

8

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. In the Overview tab find the System information field and click View hardware details.

3. On the CPU Security line, click Mitigations.
If this link is not present, it means that your system does not support SMT, and therefore is not
vulnerable.

4. In the CPU Security Toggles table, turn on the Disable simultaneous multithreading (nosmt)
option.

5. Click the Save and reboot button.

After the system restart, the CPU no longer uses SMT.

Additional resources

L1TF - L1 Terminal Fault Attack - CVE-2018-3620 & CVE-2018-3646

MDS - Microarchitectural Data Sampling - CVE-2018-12130, CVE-2018-12126, CVE-2018-12127,
and CVE-2019-11091

CHAPTER 1. SECURING RHEL DURING AND RIGHT AFTER INSTALLATION

9

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/security/vulnerabilities/L1TF
https://access.redhat.com/security/vulnerabilities/mds

CHAPTER 2. SWITCHING RHEL TO FIPS MODE
To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) 140-2, you must operate RHEL 8 in FIPS mode. Starting the installation in FIPS mode is
the recommended method if you aim for FIPS compliance.

2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS
MODE

The Federal Information Processing Standards (FIPS) Publication 140 is a series of computer security
standards developed by the National Institute of Standards and Technology (NIST) to ensure the quality
of cryptographic modules. The FIPS 140 standard ensures that cryptographic tools implement their
algorithms correctly. Runtime cryptographic algorithm and integrity self-tests are some of the
mechanisms to ensure a system uses cryptography that meets the requirements of the standard.

RHEL in FIPS mode
To ensure that your RHEL system generates and uses all cryptographic keys only with FIPS-approved
algorithms, you must switch RHEL to FIPS mode.

You can enable FIPS mode by using one of the following methods:

Starting the installation in FIPS mode

Switching the system into FIPS mode after the installation

If you aim for FIPS compliance, start the installation in FIPS mode. This avoids cryptographic key
material regeneration and reevaluation of the compliance of the resulting system associated with
converting already deployed systems.

To operate a FIPS-compliant system, create all cryptographic key material in FIPS mode. Furthermore,
the cryptographic key material must never leave the FIPS environment unless it is securely wrapped and
never unwrapped in non-FIPS environments.

The FIPS - Federal Information Processing Standards section on the Product compliance Red Hat
Customer Portal page provides an overview of the validation status of cryptographic modules for
selected RHEL minor releases.

Switching to FIPS mode after the installation
Switching the system to FIPS mode by using the fips-mode-setup tool does not guarantee compliance
with the FIPS 140 standard. Re-generating all cryptographic keys after setting the system to FIPS mode
may not be possible. For example, in the case of an existing IdM realm with users' cryptographic keys you
cannot re-generate all the keys. If you cannot start the installation in FIPS mode, always enable FIPS
mode as the first step after the installation, before you make any post-installation configuration steps or
install any workloads.

The fips-mode-setup tool also uses the FIPS system-wide cryptographic policy internally. But on top of
what the update-crypto-policies --set FIPS command does, fips-mode-setup ensures the installation
of the FIPS dracut module by using the fips-finish-install tool, it also adds the fips=1 boot option to the
kernel command line and regenerates the initial RAM disk.

Furthermore, enforcement of restrictions required in FIPS mode depends on the content of the
/proc/sys/crypto/fips_enabled file. If the file contains 1, RHEL core cryptographic components switch
to mode, in which they use only FIPS-approved implementations of cryptographic algorithms. If
/proc/sys/crypto/fips_enabled contains 0, the cryptographic components do not enable their FIPS
mode.

Red Hat Enterprise Linux 8 Security hardening

10

https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance

FIPS in crypto-policies
The FIPS system-wide cryptographic policy helps to configure higher-level restrictions. Therefore,
communication protocols supporting cryptographic agility do not announce ciphers that the system
refuses when selected. For example, the ChaCha20 algorithm is not FIPS-approved, and the FIPS
cryptographic policy ensures that TLS servers and clients do not announce the
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 TLS cipher suite, because any attempt
to use such a cipher fails.

If you operate RHEL in FIPS mode and use an application providing its own FIPS-mode-related
configuration options, ignore these options and the corresponding application guidance. The system
running in FIPS mode and the system-wide cryptographic policies enforce only FIPS-compliant
cryptography. For example, the Node.js configuration option --enable-fips is ignored if the system runs
in FIPS mode. If you use the --enable-fips option on a system not running in FIPS mode, you do not
meet the FIPS-140 compliance requirements.

Additional resources

FIPS - Federal Information Processing Standards section on the Product compliance Red Hat
Customer Portal page

RHEL system-wide cryptographic policies

FIPS publications at NIST Computer Security Resource Center .

Federal Information Processing Standards Publication: FIPS 140-3

2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED

To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) 140, enable FIPS mode during the system installation.

IMPORTANT

Only enabling FIPS mode during the RHEL installation ensures that the system generates
all keys with FIPS-approved algorithms and continuous monitoring tests in place.

WARNING

After you complete the setup of FIPS mode, you cannot switch off FIPS mode
without putting the system into an inconsistent state. If your scenario requires this
change, the only correct way is a complete re-installation of the system.

Procedure

1. Add the fips=1 option to the kernel command line during the system installation.

2. During the software selection stage, do not install any third-party software.

3. After the installation, the system starts in FIPS mode automatically.

Verification

CHAPTER 2. SWITCHING RHEL TO FIPS MODE

11

https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance
https://csrc.nist.gov/publications/fips
https://doi.org/10.6028/NIST.FIPS.140-3

Verification

After the system starts, check that FIPS mode is enabled:

$ fips-mode-setup --check
FIPS mode is enabled.

Additional resources

Editing boot options

2.3. SWITCHING THE SYSTEM TO FIPS MODE

The system-wide cryptographic policies contain a policy level that enables cryptographic algorithms in
accordance with the requirements by the Federal Information Processing Standard (FIPS) Publication
140. The fips-mode-setup tool that enables or disables FIPS mode internally uses the FIPS system-
wide cryptographic policy.

Switching the system to FIPS mode by using the FIPS system-wide cryptographic policy does not
guarantee compliance with the FIPS 140 standard. Re-generating all cryptographic keys after setting
the system to FIPS mode may not be possible. For example, in the case of an existing IdM realm with
users' cryptographic keys you cannot re-generate all the keys.

IMPORTANT

Only enabling FIPS mode during the RHEL installation ensures that the system
generates all keys with FIPS-approved algorithms and continuous monitoring tests in
place.

The fips-mode-setup tool uses the FIPS policy internally. But on top of what the update-crypto-
policies command with the --set FIPS option does, fips-mode-setup ensures the installation of the
FIPS dracut module by using the fips-finish-install tool, it also adds the fips=1 boot option to the kernel
command line and regenerates the initial RAM disk.

WARNING

After you complete the setup of FIPS mode, you cannot switch off FIPS mode
without putting the system into an inconsistent state. If your scenario requires this
change, the only correct way is a complete re-installation of the system.

Procedure

1. To switch the system to FIPS mode:

fips-mode-setup --enable
Kernel initramdisks are being regenerated. This might take some time.
Setting system policy to FIPS
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies

Red Hat Enterprise Linux 8 Security hardening

12

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_from_installation_media/optional-customizing-boot-options_rhel-installer

to fully take place.
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

2. Restart your system to allow the kernel to switch to FIPS mode:

reboot

Verification

After the restart, you can check the current state of FIPS mode:

fips-mode-setup --check
FIPS mode is enabled.

Additional resources

fips-mode-setup(8) man page on your system

FIPS - Federal Information Processing Standards section on the Product compliance Red Hat
Customer Portal page

Security Requirements for Cryptographic Modules on the National Institute of Standards and
Technology (NIST) web site.

2.4. ENABLING FIPS MODE IN A CONTAINER

To enable the full set of cryptographic module self-checks mandated by the Federal Information
Processing Standard Publication 140-2 (FIPS mode), the host system kernel must be running in FIPS
mode. Depending on the version of your host system, enabling FIPS mode on containers either is fully
automatic or requires only one command.

The fips-mode-setup command does not work correctly in containers, and it cannot be used to enable
or check FIPS mode in this scenario.

Prerequisites

The host system must be in FIPS mode.

Procedure

On hosts running RHEL 8.1 and 8.2: Set the FIPS cryptographic policy level in the container
using the following command, and ignore the advice to use the fips-mode-setup command:

$ update-crypto-policies --set FIPS

On hosts running RHEL 8.4 and later: On systems with FIPS mode enabled, the podman utility
automatically enables FIPS mode on supported containers.

Additional resources

Switching the system to FIPS mode .

CHAPTER 2. SWITCHING RHEL TO FIPS MODE

13

https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance
https://csrc.nist.gov/publications/detail/fips/140/2/final

Installing the system in FIPS mode

FIPS - Federal Information Processing Standards section on the Product compliance Red Hat
Customer Portal page

2.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS
NOT COMPLIANT WITH FIPS 140-2

To pass all relevant cryptographic certifications, such as FIPS 140, use libraries from the core
cryptographic components set. These libraries, except from libgcrypt, also follow the RHEL system-
wide cryptographic policies.

See the RHEL core cryptographic components Red Hat Knowledgebase article for an overview of the
core cryptographic components, the information on how are they selected, how are they integrated into
the operating system, how do they support hardware security modules and smart cards, and how do
cryptographic certifications apply to them.

In addition to the following table, in some RHEL 8 Z-stream releases (for example, 8.1.1), the Firefox
browser packages have been updated, and they contain a separate copy of the NSS cryptography
library. This way, Red Hat wants to avoid the disruption of rebasing such a low-level component in a
patch release. As a result, these Firefox packages do not use a FIPS 140-2-validated module.

List of RHEL 8 applications that use cryptography not compliant with FIPS 140-2

FreeRADIUS

The RADIUS protocol uses MD5.

Ghostscript

Custom cryptography implementation (MD5, RC4, SHA-2, AES) to encrypt and decrypt documents.

iPXE

Cryptographic stack for TLS is compiled in, however, it is unused.

Libica

Software fallbacks for various algorithms such as RSA and ECDH through CPACF instructions.

Ovmf (UEFI firmware), Edk2, shim

Full cryptographic stack (an embedded copy of the OpenSSL library).

Perl

HMAC, HMAC-SHA1, HMAC-MD5, SHA-1, SHA-224,…

Pidgin

Implements DES and RC4.

QAT Engine

Mixed hardware and software implementation of cryptographic primitives (RSA, EC, DH, AES,…).

Samba [1]

Implements AES, DES, and RC4.

SWTPM

Explicitly disables FIPS mode in its OpenSSL usage.

Valgrind

AES, hashes [2]

zip

Custom cryptography implementation (insecure PKWARE encryption algorithm) to encrypt and

Red Hat Enterprise Linux 8 Security hardening

14

https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance
https://access.redhat.com/articles/3655361

Custom cryptography implementation (insecure PKWARE encryption algorithm) to encrypt and
decrypt archives using a password.

Additional resources

FIPS - Federal Information Processing Standards section on the Product compliance Red Hat
Customer Portal page

RHEL core cryptographic components (Red Hat Knowledgebase)

[1] Starting with RHEL 8.3, samba uses FIPS-compliant cryptography.

[2] Re-implements in software hardware-offload operations, such as AES-NI.

CHAPTER 2. SWITCHING RHEL TO FIPS MODE

15

https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance
https://access.redhat.com/articles/3655361

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC
POLICIES

The system-wide cryptographic policies is a system component that configures the core cryptographic
subsystems, covering the TLS, IPsec, SSH, DNSSec, and Kerberos protocols. It provides a small set of
policies, which the administrator can select.

3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

When a system-wide policy is set up, applications in RHEL follow it and refuse to use algorithms and
protocols that do not meet the policy, unless you explicitly request the application to do so. That is, the
policy applies to the default behavior of applications when running with the system-provided
configuration but you can override it if required.

RHEL 8 contains the following predefined policies:

DEFAULT

The default system-wide cryptographic policy level offers secure settings for current threat models.
It allows the TLS 1.2 and 1.3 protocols, as well as the IKEv2 and SSH2 protocols. The RSA keys and
Diffie-Hellman parameters are accepted if they are at least 2048 bits long.

LEGACY

Ensures maximum compatibility with Red Hat Enterprise Linux 5 and earlier; it is less secure due to an
increased attack surface. In addition to the DEFAULT level algorithms and protocols, it includes
support for the TLS 1.0 and 1.1 protocols. The algorithms DSA, 3DES, and RC4 are allowed, while RSA
keys and Diffie-Hellman parameters are accepted if they are at least 1023 bits long.

FUTURE

A stricter forward-looking security level intended for testing a possible future policy. This policy does
not allow the use of SHA-1 in signature algorithms. It allows the TLS 1.2 and 1.3 protocols, as well as
the IKEv2 and SSH2 protocols. The RSA keys and Diffie-Hellman parameters are accepted if they are
at least 3072 bits long. If your system communicates on the public internet, you might face
interoperability problems.

IMPORTANT

Because a cryptographic key used by a certificate on the Customer Portal API does
not meet the requirements by the FUTURE system-wide cryptographic policy, the
redhat-support-tool utility does not work with this policy level at the moment.

To work around this problem, use the DEFAULT cryptographic policy while connecting
to the Customer Portal API.

FIPS

Conforms with the FIPS 140 requirements. The fips-mode-setup tool, which switches the RHEL
system into FIPS mode, uses this policy internally. Switching to the FIPS policy does not guarantee
compliance with the FIPS 140 standard. You also must re-generate all cryptographic keys after you
set the system to FIPS mode. This is not possible in many scenarios.
RHEL also provides the FIPS:OSPP system-wide subpolicy, which contains further restrictions for
cryptographic algorithms required by the Common Criteria (CC) certification. The system becomes
less interoperable after you set this subpolicy. For example, you cannot use RSA and DH keys
shorter than 3072 bits, additional SSH algorithms, and several TLS groups. Setting FIPS:OSPP also
prevents connecting to Red Hat Content Delivery Network (CDN) structure. Furthermore, you

Red Hat Enterprise Linux 8 Security hardening

16

cannot integrate Active Directory (AD) into the IdM deployments that use FIPS:OSPP,
communication between RHEL hosts using FIPS:OSPP and AD domains might not work, or some AD
accounts might not be able to authenticate.

NOTE

Your system is not CC-compliant after you set the FIPS:OSPP cryptographic
subpolicy. The only correct way to make your RHEL system compliant with the CC
standard is by following the guidance provided in the cc-config package. See
Common Criteria section on the Product compliance Red Hat Customer Portal page
for a list of certified RHEL versions, validation reports, and links to CC guides.

Red Hat continuously adjusts all policy levels so that all libraries provide secure defaults, except when
using the LEGACY policy. Even though the LEGACY profile does not provide secure defaults, it does
not include any algorithms that are easily exploitable. As such, the set of enabled algorithms or
acceptable key sizes in any provided policy may change during the lifetime of Red Hat Enterprise Linux.

Such changes reflect new security standards and new security research. If you must ensure
interoperability with a specific system for the whole lifetime of Red Hat Enterprise Linux, you should
opt-out from the system-wide cryptographic policies for components that interact with that system or
re-enable specific algorithms using custom cryptographic policies.

The specific algorithms and ciphers described as allowed in the policy levels are available only if an
application supports them:

Table 3.1. Cipher suites and protocols enabled in the cryptographic policies

 LEGACY DEFAULT FIPS FUTURE

IKEv1 no no no no

3DES yes no no no

RC4 yes no no no

DH min. 1024-bit min. 2048-bit min. 2048-bit[a] min. 3072-bit

RSA min. 1024-bit min. 2048-bit min. 2048-bit min. 3072-bit

DSA yes no no no

TLS v1.0 yes no no no

TLS v1.1 yes no no no

SHA-1 in digital
signatures

yes yes no no

CBC mode
ciphers

yes yes yes no[b]

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

17

https://access.redhat.com/en/compliance/common-criteria
https://access.redhat.com/en/compliance

Symmetric
ciphers with keys
< 256 bits

yes yes yes no

SHA-1 and SHA-
224 signatures in
certificates

yes yes yes no

[a] You can use only Diffie-Hellman groups defined in RFC 7919 and RFC 3526.

[b] CBC ciphers are disabled for TLS. In a non-TLS scenario, AES-128-CBC is disabled but AES-256-CBC is
enabled. To disable also AES-256-CBC, apply a custom subpolicy.

 LEGACY DEFAULT FIPS FUTURE

Additional resources

crypto-policies(7) and update-crypto-policies(8) man pages on your system

Product compliance (Red Hat Customer Portal)

3.2. CHANGING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY

You can change the system-wide cryptographic policy on your system by using the update-crypto-
policies tool and restarting your system.

Prerequisites

You have root privileges on the system.

Procedure

1. Optional: Display the current cryptographic policy:

$ update-crypto-policies --show
DEFAULT

2. Set the new cryptographic policy:

update-crypto-policies --set <POLICY>
<POLICY>

Replace <POLICY> with the policy or subpolicy you want to set, for example FUTURE,
LEGACY or FIPS:OSPP.

3. Restart the system:

reboot

Verification

Red Hat Enterprise Linux 8 Security hardening

18

https://access.redhat.com/en/compliance

Display the current cryptographic policy:

$ update-crypto-policies --show
<POLICY>

Additional resources

For more information on system-wide cryptographic policies, see System-wide cryptographic
policies

3.3. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO
MODE COMPATIBLE WITH EARLIER RELEASES

The default system-wide cryptographic policy in Red Hat Enterprise Linux 8 does not allow
communication using older, insecure protocols. For environments that require to be compatible with
Red Hat Enterprise Linux 6 and in some cases also with earlier releases, the less secure LEGACY policy
level is available.

WARNING

Switching to the LEGACY policy level results in a less secure system and
applications.

Procedure

1. To switch the system-wide cryptographic policy to the LEGACY level, enter the following
command as root:

update-crypto-policies --set LEGACY
Setting system policy to LEGACY

Additional resources

For the list of available cryptographic policy levels, see the update-crypto-policies(8) man
page on your system.

For defining custom cryptographic policies, see the Custom Policies section in the update-
crypto-policies(8) man page and the Crypto Policy Definition Format section in the crypto-
policies(7) man page on your system.

3.4. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE
WEB CONSOLE

You can set one of system-wide cryptographic policies and subpolicies directly in the RHEL web
console interface. Besides the four predefined system-wide cryptographic policies, you can also apply
the following combinations of policies and subpolicies through the graphical interface now:

DEFAULT:SHA1

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

19

The DEFAULT policy with the SHA-1 algorithm enabled.

LEGACY:AD-SUPPORT

The LEGACY policy with less secure settings that improve interoperability for Active Directory
services.

FIPS:OSPP

The FIPS policy with further restrictions required by the Common Criteria for Information
Technology Security Evaluation standard.

WARNING

Because the FIPS:OSPP system-wide subpolicy contains further restrictions for
cryptographic algorithms required by the Common Criteria (CC) certification, the
system is less interoperable after you set it. For example, you cannot use RSA and
DH keys shorter than 3072 bits, additional SSH algorithms, and several TLS groups.
Setting FIPS:OSPP also prevents connecting to Red Hat Content Delivery Network
(CDN) structure. Furthermore, you cannot integrate Active Directory (AD) into the
IdM deployments that use FIPS:OSPP, communication between RHEL hosts using
FIPS:OSPP and AD domains might not work, or some AD accounts might not be
able to authenticate.

Note that your system is not CC-compliant after you set the FIPS:OSPP
cryptographic subpolicy. The only correct way to make your RHEL system compliant
with the CC standard is by following the guidance provided in the cc-config
package. See the Common Criteria section on the Product compliance Red Hat
Customer Portal page for a list of certified RHEL versions, validation reports, and
links to CC guides hosted at the National Information Assurance Partnership (NIAP)
website.

Prerequisites

You have installed the RHEL 8 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

You have root privileges or permissions to enter administrative commands with sudo.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. In the Configuration card of the Overview page, click your current policy value next to Crypto
policy.

Red Hat Enterprise Linux 8 Security hardening

20

https://access.redhat.com/en/compliance/common-criteria
https://access.redhat.com/en/compliance
https://www.niap-ccevs.org/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

3. In the Change crypto policy dialog window, click on the policy you want to start using on your
system.

4. Click the Apply and reboot button.

Verification

After the restart, log back in to web console, and check that the Crypto policy value
corresponds to the one you selected.
Alternatively, you can enter the update-crypto-policies --show command to display the current
system-wide cryptographic policy in your terminal.

3.5. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE
CRYPTOGRAPHIC POLICIES

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

21

You can customize cryptographic settings used by your application preferably by configuring supported
cipher suites and protocols directly in the application.

You can also remove a symlink related to your application from the /etc/crypto-policies/back-ends
directory and replace it with your customized cryptographic settings. This configuration prevents the
use of system-wide cryptographic policies for applications that use the excluded back end.
Furthermore, this modification is not supported by Red Hat.

3.5.1. Examples of opting out of the system-wide cryptographic policies

wget

To customize cryptographic settings used by the wget network downloader, use --secure-protocol and
--ciphers options. For example:

$ wget --secure-protocol=TLSv1_1 --ciphers="SECURE128" https://example.com

See the HTTPS (SSL/TLS) Options section of the wget(1) man page for more information.

curl

To specify ciphers used by the curl tool, use the --ciphers option and provide a colon-separated list of
ciphers as a value. For example:

$ curl https://example.com --ciphers '@SECLEVEL=0:DES-CBC3-SHA:RSA-DES-CBC3-SHA'

See the curl(1) man page for more information.

Firefox

Even though you cannot opt out of system-wide cryptographic policies in the Firefox web browser, you
can further restrict supported ciphers and TLS versions in Firefox’s Configuration Editor. Type
about:config in the address bar and change the value of the security.tls.version.min option as
required. Setting security.tls.version.min to 1 allows TLS 1.0 as the minimum required,
security.tls.version.min 2 enables TLS 1.1, and so on.

OpenSSH

To opt out of the system-wide cryptographic policies for your OpenSSH server, uncomment the line
with the CRYPTO_POLICY= variable in the /etc/sysconfig/sshd file. After this change, values that you
specify in the Ciphers, MACs, KexAlgoritms, and GSSAPIKexAlgorithms sections in the
/etc/ssh/sshd_config file are not overridden.

See the sshd_config(5) man page for more information.

To opt out of system-wide cryptographic policies for your OpenSSH client, perform one of the following
tasks:

For a given user, override the global ssh_config with a user-specific configuration in the
~/.ssh/config file.

For the entire system, specify the cryptographic policy in a drop-in configuration file located in
the /etc/ssh/ssh_config.d/ directory, with a two-digit number prefix smaller than 5, so that it
lexicographically precedes the 05-redhat.conf file, and with a .conf suffix, for example, 04-
crypto-policy-override.conf.

See the ssh_config(5) man page for more information.

Red Hat Enterprise Linux 8 Security hardening

22

Libreswan

See the Configuring IPsec connections that opt out of the system-wide crypto policies in the Securing
networks document for detailed information.

Additional resources

update-crypto-policies(8) man page on your system

3.6. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH
SUBPOLICIES

Use this procedure to adjust the set of enabled cryptographic algorithms or protocols.

You can either apply custom subpolicies on top of an existing system-wide cryptographic policy or
define such a policy from scratch.

The concept of scoped policies allows enabling different sets of algorithms for different back ends. You
can limit each configuration directive to specific protocols, libraries, or services.

Furthermore, directives can use asterisks for specifying multiple values using wildcards.

The /etc/crypto-policies/state/CURRENT.pol file lists all settings in the currently applied system-wide
cryptographic policy after wildcard expansion. To make your cryptographic policy more strict, consider
using values listed in the /usr/share/crypto-policies/policies/FUTURE.pol file.

You can find example subpolicies in the /usr/share/crypto-policies/policies/modules/ directory. The
subpolicy files in this directory contain also descriptions in lines that are commented out.

NOTE

Customization of system-wide cryptographic policies is available from RHEL 8.2. You can
use the concept of scoped policies and the option of using wildcards in RHEL 8.5 and
newer.

Procedure

1. Checkout to the /etc/crypto-policies/policies/modules/ directory:

cd /etc/crypto-policies/policies/modules/

2. Create subpolicies for your adjustments, for example:

touch MYCRYPTO-1.pmod
touch SCOPES-AND-WILDCARDS.pmod

IMPORTANT

Use upper-case letters in file names of policy modules.

3. Open the policy modules in a text editor of your choice and insert options that modify the
system-wide cryptographic policy, for example:

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/configuring-a-vpn-connection_securing-networks#configuring-ipsec-connections-that-opt-out-of-the-system-wide-crypto-policies_configuring-a-vpn-with-ipsec
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/

vi MYCRYPTO-1.pmod

min_rsa_size = 3072
hash = SHA2-384 SHA2-512 SHA3-384 SHA3-512

vi SCOPES-AND-WILDCARDS.pmod

Disable the AES-128 cipher, all modes
cipher = -AES-128-*

Disable CHACHA20-POLY1305 for the TLS protocol (OpenSSL, GnuTLS, NSS, and
OpenJDK)
cipher@TLS = -CHACHA20-POLY1305

Allow using the FFDHE-1024 group with the SSH protocol (libssh and OpenSSH)
group@SSH = FFDHE-1024+

Disable all CBC mode ciphers for the SSH protocol (libssh and OpenSSH)
cipher@SSH = -*-CBC

Allow the AES-256-CBC cipher in applications using libssh
cipher@libssh = AES-256-CBC+

4. Save the changes in the module files.

5. Apply your policy adjustments to the DEFAULT system-wide cryptographic policy level:

update-crypto-policies --set DEFAULT:MYCRYPTO-1:SCOPES-AND-WILDCARDS

6. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Verification

Check that the /etc/crypto-policies/state/CURRENT.pol file contains your changes, for
example:

$ cat /etc/crypto-policies/state/CURRENT.pol | grep rsa_size
min_rsa_size = 3072

Additional resources

Custom Policies section in the update-crypto-policies(8) man page on your system

Crypto Policy Definition Format section in the crypto-policies(7) man page on your system

How to customize crypto policies in RHEL 8.2 Red Hat blog article

3.7. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE

Red Hat Enterprise Linux 8 Security hardening

24

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

3.7. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE
CRYPTOGRAPHIC POLICY

Because the SHA-1 hash function has an inherently weak design, and advancing cryptanalysis has made it
vulnerable to attacks, RHEL 8 does not use SHA-1 by default. Nevertheless, some third-party
applications, for example, public signatures, still use SHA-1. To disable the use of SHA-1 in signature
algorithms on your system, you can use the NO-SHA1 policy module.

IMPORTANT

The NO-SHA1 policy module disables the SHA-1 hash function only in signatures and not
elsewhere. In particular, the NO-SHA1 module still allows the use of SHA-1 with hash-
based message authentication codes (HMAC). This is because HMAC security properties
do not rely on the collision resistance of the corresponding hash function, and therefore
the recent attacks on SHA-1 have a significantly lower impact on the use of SHA-1 for
HMAC.

If your scenario requires disabling a specific key exchange (KEX) algorithm combination, for example,
diffie-hellman-group-exchange-sha1, but you still want to use both the relevant KEX and the algorithm
in other combinations, see the Red Hat Knowledgebase solution Steps to disable the diffie-hellman-
group1-sha1 algorithm in SSH for instructions on opting out of system-wide crypto-policies for SSH and
configuring SSH directly.

NOTE

The module for disabling SHA-1 is available from RHEL 8.3. Customization of system-
wide cryptographic policies is available from RHEL 8.2.

Procedure

1. Apply your policy adjustments to the DEFAULT system-wide cryptographic policy level:

update-crypto-policies --set DEFAULT:NO-SHA1

2. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page on your system

Crypto Policy Definition Format section in the crypto-policies(7) man page on your system

How to customize crypto policies in RHEL Red Hat blog article.

3.8. CREATING AND SETTING A CUSTOM SYSTEM-WIDE
CRYPTOGRAPHIC POLICY

For specific scenarios, you can customize the system-wide cryptographic policy by creating and using a
complete policy file.

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

25

https://access.redhat.com/solutions/4278651
https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

NOTE

Customization of system-wide cryptographic policies is available from RHEL 8.2.

Procedure

1. Create a policy file for your customizations:

cd /etc/crypto-policies/policies/
touch MYPOLICY.pol

Alternatively, start by copying one of the four predefined policy levels:

cp /usr/share/crypto-policies/policies/DEFAULT.pol /etc/crypto-
policies/policies/MYPOLICY.pol

2. Edit the file with your custom cryptographic policy in a text editor of your choice to fit your
requirements, for example:

vi /etc/crypto-policies/policies/MYPOLICY.pol

3. Switch the system-wide cryptographic policy to your custom level:

update-crypto-policies --set MYPOLICY

4. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page and the Crypto Policy
Definition Format section in the crypto-policies(7) man page on your system

How to customize crypto policies in RHEL Red Hat blog article

3.9. ENHANCING SECURITY WITH THE FUTURE CRYPTOGRAPHIC
POLICY USING THE CRYPTO_POLICIES RHEL SYSTEM ROLE

You can use the crypto_policies RHEL system role to configure the FUTURE policy on your managed
nodes. This policy helps to achieve for example:

Future-proofing against emerging threats: anticipates advancements in computational power.

Enhanced security: stronger encryption standards require longer key lengths and more secure
algorithms.

Compliance with high-security standards: for example in healthcare, telco, and finance the data
sensitivity is high, and availability of strong cryptography is critical.

Typically, FUTURE is suitable for environments handling highly sensitive data, preparing for future
regulations, or adopting long-term security strategies.

Red Hat Enterprise Linux 8 Security hardening

26

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

WARNING

Legacy systems or software does not have to support the more modern and stricter
algorithms and protocols enforced by the FUTURE policy. For example, older
systems might not support TLS 1.3 or larger key sizes. This could lead to
compatibility problems.

Also, using strong algorithms usually increases the computational workload, which
could negatively affect your system performance.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

crypto_policies_policy: FUTURE

Configures the required cryptographic policy (FUTURE) on the managed node. It can be
either the base policy or a base policy with some sub-policies. The specified base policy and
sub-policies have to be available on the managed node. The default value is null. It means
that the configuration is not changed and the crypto_policies RHEL system role will only
collect the Ansible facts.

crypto_policies_reboot_ok: true

Causes the system to reboot after the cryptographic policy change to make sure all of the
services and applications will read the new configuration files. The default value is false.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.crypto_policies/README.md file on the control node.

2. Validate the playbook syntax:

- name: Configure cryptographic policies
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure the FUTURE cryptographic security policy on the managed node
 ansible.builtin.include_role:
 name: rhel-system-roles.crypto_policies
 vars:
 - crypto_policies_policy: FUTURE
 - crypto_policies_reboot_ok: true

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

WARNING

Because the FIPS:OSPP system-wide subpolicy contains further restrictions for
cryptographic algorithms required by the Common Criteria (CC) certification, the
system is less interoperable after you set it. For example, you cannot use RSA and
DH keys shorter than 3072 bits, additional SSH algorithms, and several TLS groups.
Setting FIPS:OSPP also prevents connecting to Red Hat Content Delivery Network
(CDN) structure. Furthermore, you cannot integrate Active Directory (AD) into the
IdM deployments that use FIPS:OSPP, communication between RHEL hosts using
FIPS:OSPP and AD domains might not work, or some AD accounts might not be
able to authenticate.

Note that your system is not CC-compliant after you set the FIPS:OSPP
cryptographic subpolicy. The only correct way to make your RHEL system compliant
with the CC standard is by following the guidance provided in the cc-config
package. See the Common Criteria section on the Product compliance Red Hat
Customer Portal page for a list of certified RHEL versions, validation reports, and
links to CC guides hosted at the National Information Assurance Partnership (NIAP)
website.

Verification

1. On the control node, create another playbook named, for example, verify_playbook.yml:

The settings specified in the example playbook include the following:

crypto_policies_active

An exported Ansible fact that contains the currently active policy name in the format as
accepted by the crypto_policies_policy variable.

- name: Verification
 hosts: managed-node-01.example.com
 tasks:
 - name: Verify active cryptographic policy
 ansible.builtin.include_role:
 name: rhel-system-roles.crypto_policies
 - name: Display the currently active cryptographic policy
 ansible.builtin.debug:
 var: crypto_policies_active

Red Hat Enterprise Linux 8 Security hardening

28

https://access.redhat.com/en/compliance/common-criteria
https://access.redhat.com/en/compliance
https://www.niap-ccevs.org/

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/verify_playbook.yml

3. Run the playbook:

$ ansible-playbook ~/verify_playbook.yml
TASK [debug] **************************
ok: [host] => {
 "crypto_policies_active": "FUTURE"
}

The crypto_policies_active variable shows the active policy on the managed node.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md file

/usr/share/doc/rhel-system-roles/crypto_policies/ directory

update-crypto-policies(8) and crypto-policies(7) manual pages

3.10. ADDITIONAL RESOURCES

System-wide crypto policies in RHEL 8 and Strong crypto defaults in RHEL 8 and deprecation
of weak crypto algorithms Knowledgebase articles

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

29

https://access.redhat.com/articles/3666211
https://access.redhat.com/articles/3642912

CHAPTER 4. CONFIGURING APPLICATIONS TO USE
CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

Separating parts of your secret information about dedicated cryptographic devices, such as smart cards
and cryptographic tokens for end-user authentication and hardware security modules (HSM) for server
applications, provides an additional layer of security. In RHEL, support for cryptographic hardware
through the PKCS #11 API is consistent across different applications, and the isolation of secrets on
cryptographic hardware is not a complicated task.

4.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11

Public-Key Cryptography Standard (PKCS) #11 defines an application programming interface (API) to
cryptographic devices that hold cryptographic information and perform cryptographic functions.

PKCS #11 introduces the cryptographic token , an object that presents each hardware or software device
to applications in a unified manner. Therefore, applications view devices such as smart cards, which are
typically used by persons, and hardware security modules, which are typically used by computers, as
PKCS #11 cryptographic tokens.

A PKCS #11 token can store various object types including a certificate; a data object; and a public,
private, or secret key. These objects are uniquely identifiable through the PKCS #11 Uniform Resource
Identifier (URI) scheme.

A PKCS #11 URI is a standard way to identify a specific object in a PKCS #11 module according to the
object attributes. This enables you to configure all libraries and applications with the same configuration
string in the form of a URI.

RHEL provides the OpenSC PKCS #11 driver for smart cards by default. However, hardware tokens and
HSMs can have their own PKCS #11 modules that do not have their counterpart in the system. You can
register such PKCS #11 modules with the p11-kit tool, which acts as a wrapper over the registered smart-
card drivers in the system.

To make your own PKCS #11 module work on the system, add a new text file to the
/etc/pkcs11/modules/ directory

You can add your own PKCS #11 module into the system by creating a new text file in the
/etc/pkcs11/modules/ directory. For example, the OpenSC configuration file in p11-kit looks as follows:

$ cat /usr/share/p11-kit/modules/opensc.module
module: opensc-pkcs11.so

Additional resources

Consistent PKCS #11 support in Red Hat Enterprise Linux 8

The PKCS #11 URI Scheme

Controlling access to smart cards

4.2. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD

You can create and store ECDSA and RSA keys on a smart card and authenticate by the smart card on
an OpenSSH client. Smart-card authentication replaces the default password authentication.

Red Hat Enterprise Linux 8 Security hardening

30

https://www.redhat.com/en/blog/consistent-pkcs-11-support-red-hat-enterprise-linux-8
https://tools.ietf.org/html/rfc7512
https://access.redhat.com/blogs/766093/posts/1976313

Prerequisites

On the client side, the opensc package is installed and the pcscd service is running.

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub

2. Transfer the public key to the remote server. Use the ssh-copy-id command with the keys.pub
file created in the previous step:

$ ssh-copy-id -f -i keys.pub <username@ssh-server-example.com>

3. Connect to <ssh-server-example.com> by using the ECDSA key. You can use just a subset of the
URI, which uniquely references your key, for example:

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" <ssh-server-
example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to the p11-kit tool, you can simplify the previous command:

$ ssh -i "pkcs11:id=%01" <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy
module. This can reduce the amount of typing required:

$ ssh -i pkcs11: <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

4. Optional: You can use the same URI string in the ~/.ssh/config file to make the configuration
permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

The ssh client utility now automatically uses this URI and the key from the smart card.

Additional resources

p11-kit(8), opensc.conf(5), pcscd(8), ssh(1), and ssh-keygen(1) man pages on your system

CHAPTER 4. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

31

4.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH
CERTIFICATES ON SMART CARDS

Authentication by using smart cards in applications may increase security and simplify automation. You
can integrate the Public Key Cryptography Standard (PKCS) #11 URIs into your application by using the
following methods:

The Firefox web browser automatically loads the p11-kit-proxy PKCS #11 module. This means
that every supported smart card in the system is automatically detected. For using TLS client
authentication, no additional setup is required and keys and certificates from a smart card are
automatically used when a server requests them.

If your application uses the GnuTLS or NSS library, it already supports PKCS #11 URIs. Also,
applications that rely on the OpenSSL library can access cryptographic hardware modules,
including smart cards, through the pkcs11 engine provided by the openssl-pkcs11 package.

Applications that require working with private keys on smart cards and that do not use NSS,
GnuTLS, nor OpenSSL can use the p11-kit API directly to work with cryptographic hardware
modules, including smart cards, rather than using the PKCS #11 API of specific PKCS #11
modules.

With the the wget network downloader, you can specify PKCS #11 URIs instead of paths to
locally stored private keys and certificates. This might simplify creation of scripts for tasks that
require safely stored private keys and certificates. For example:

$ wget --private-key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --
certificate 'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

You can also specify PKCS #11 URI when using the curl tool:

$ curl --key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --cert
'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

Additional resources

curl(1), wget(1), and p11-kit(8) man pages on your system

4.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE

The Apache HTTP server can work with private keys stored on hardware security modules (HSMs),
which helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually
requires high-performance HSMs for busy servers.

For secure communication in the form of the HTTPS protocol, the Apache HTTP server (httpd) uses
the OpenSSL library. OpenSSL does not support PKCS #11 natively. To use HSMs, you have to install the
openssl-pkcs11 package, which provides access to PKCS #11 modules through the engine interface.
You can use a PKCS #11 URI instead of a regular file name to specify a server key and a certificate in the
/etc/httpd/conf.d/ssl.conf configuration file, for example:

SSLCertificateFile "pkcs11:id=%01;token=softhsm;type=cert"
SSLCertificateKeyFile "pkcs11:id=%01;token=softhsm;type=private?pin-value=111111"

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,

Red Hat Enterprise Linux 8 Security hardening

32

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in the /usr/share/httpd/manual/mod/mod_ssl.html file.

4.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX

The Nginx HTTP server can work with private keys stored on hardware security modules (HSMs), which
helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually requires
high-performance HSMs for busy servers.

Because Nginx also uses the OpenSSL for cryptographic operations, support for PKCS #11 must go
through the openssl-pkcs11 engine. Nginx currently supports only loading private keys from an HSM,
and a certificate must be provided separately as a regular file. Modify the ssl_certificate and
ssl_certificate_key options in the server section of the /etc/nginx/nginx.conf configuration file:

ssl_certificate /path/to/cert.pem
ssl_certificate_key "engine:pkcs11:pkcs11:token=softhsm;id=%01;type=private?pin-value=111111";

Note that the engine:pkcs11: prefix is needed for the PKCS #11 URI in the Nginx configuration file.
This is because the other pkcs11 prefix refers to the engine name.

4.6. ADDITIONAL RESOURCES

pkcs11.conf(5) man page on your system

CHAPTER 4. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

33

CHAPTER 5. CONTROLLING ACCESS TO SMART CARDS BY
USING POLKIT

To cover possible threats that cannot be prevented by mechanisms built into smart cards, such as PINs,
PIN pads, and biometrics, and for more fine-grained control, RHEL uses the polkit framework for
controlling access control to smart cards.

System administrators can configure polkit to fit specific scenarios, such as smart-card access for non-
privileged or non-local users or services.

5.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT

The Personal Computer/Smart Card (PC/SC) protocol specifies a standard for integrating smart cards
and their readers into computing systems. In RHEL, the pcsc-lite package provides middleware to
access smart cards that use the PC/SC API. A part of this package, the pcscd (PC/SC Smart Card)
daemon, ensures that the system can access a smart card using the PC/SC protocol.

Because access-control mechanisms built into smart cards, such as PINs, PIN pads, and biometrics, do
not cover all possible threats, RHEL uses the polkit framework for more robust access control. The
polkit authorization manager can grant access to privileged operations. In addition to granting access to
disks, you can use polkit also to specify policies for securing smart cards. For example, you can define
which users can perform which operations with a smart card.

After installing the pcsc-lite package and starting the pcscd daemon, the system enforces policies
defined in the /usr/share/polkit-1/actions/ directory. The default system-wide policy is in the
/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy file. Polkit policy files use the XML format and
the syntax is described in the polkit(8) man page on your system.

The polkitd service monitors the /etc/polkit-1/rules.d/ and /usr/share/polkit-1/rules.d/ directories for
any changes in rule files stored in these directories. The files contain authorization rules in JavaScript
format. System administrators can add custom rule files in both directories, and polkitd reads them in
lexical order based on their file name. If two files have the same names, then the file in /etc/polkit-
1/rules.d/ is read first.

If you need to enable smart-card support when the system security services daemon (SSSD) does not
run as root, you must install the sssd-polkit-rules package. The package provides polkit integration
with SSSD.

Additional resources

polkit(8), polkitd(8), and pcscd(8) man pages on your system

5.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND
POLKIT

Polkit policies that are automatically enforced after you install the pcsc-lite package and start the
pcscd daemon may ask for authentication in the user’s session even if the user does not directly
interact with a smart card. In GNOME, you can see the following error message:

Authentication is required to access the PC/SC daemon

Note that the system can install the pcsc-lite package as a dependency when you install other packages
related to smart cards such as opensc.

Red Hat Enterprise Linux 8 Security hardening

34

If your scenario does not require any interaction with smart cards and you want to prevent displaying
authorization requests for the PC/SC daemon, you can remove the pcsc-lite package. Keeping the
minimum of necessary packages is a good security practice anyway.

If you use smart cards, start troubleshooting by checking the rules in the system-provided policy file at
/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy. You can add your custom rule files to the
policy in the /etc/polkit-1/rules.d/ directory, for example, 03-allow-pcscd.rules. Note that the rule files
use the JavaScript syntax, the policy file is in the XML format.

To understand what authorization requests the system displays, check the Journal log, for example:

$ journalctl -b | grep pcsc
...
Process 3087 (user: 1001) is NOT authorized for action: access_pcsc
...

The previous log entry means that the user is not authorized to perform an action by the policy. You can
solve this denial by adding a corresponding rule to /etc/polkit-1/rules.d/.

You can search also for log entries related to the polkitd unit, for example:

$ journalctl -u polkit
...
polkitd[NNN]: Error compiling script /etc/polkit-1/rules.d/00-debug-pcscd.rules
...
polkitd[NNN]: Operator of unix-session:c2 FAILED to authenticate to gain authorization for action
org.debian.pcsc-lite.access_pcsc for unix-process:4800:14441 [/usr/libexec/gsd-smartcard] (owned
by unix-user:group)
...

In the previous output, the first entry means that the rule file contains some syntax error. The second
entry means that the user failed to gain the access to pcscd.

You can also list all applications that use the PC/SC protocol by a short script. Create an executable file,
for example, pcsc-apps.sh, and insert the following code:

#!/bin/bash

cd /proc

for p in [0-9]*
do
 if grep libpcsclite.so.1.0.0 $p/maps &> /dev/null
 then
 echo -n "process: "
 cat $p/cmdline
 echo " ($p)"
 fi
done

Run the script as root:

./pcsc-apps.sh
process: /usr/libexec/gsd-smartcard (3048)
enable-sync --auto-ssl-client-auth --enable-crashpad (4828)

CHAPTER 5. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT

35

...

Additional resources

journalctl, polkit(8), polkitd(8), and pcscd(8) man pages.

5.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT
AUTHORIZATION TO PC/SC

In the default configuration, the polkit authorization framework sends only limited information to the
Journal log. You can extend polkit log entries related to the PC/SC protocol by adding new rules.

Prerequisites

You have installed the pcsc-lite package on your system.

The pcscd daemon is running.

Procedure

1. Create a new file in the /etc/polkit-1/rules.d/ directory:

touch /etc/polkit-1/rules.d/00-test.rules

2. Edit the file in an editor of your choice, for example:

vi /etc/polkit-1/rules.d/00-test.rules

3. Insert the following lines:

polkit.addRule(function(action, subject) {
 if (action.id == "org.debian.pcsc-lite.access_pcsc" ||
 action.id == "org.debian.pcsc-lite.access_card") {
 polkit.log("action=" + action);
 polkit.log("subject=" + subject);
 }
});

Save the file, and exit the editor.

4. Restart the pcscd and polkit services:

systemctl restart pcscd.service pcscd.socket polkit.service

Verification

1. Make an authorization request for pcscd. For example, open the Firefox web browser or use the
pkcs11-tool -L command provided by the opensc package.

2. Display the extended log entries, for example:

journalctl -u polkit --since "1 hour ago"

Red Hat Enterprise Linux 8 Security hardening

36

polkitd[1224]: <no filename>:4: action=[Action id='org.debian.pcsc-lite.access_pcsc']
polkitd[1224]: <no filename>:5: subject=[Subject pid=2020481 user=user'
groups=user,wheel,mock,wireshark seat=null session=null local=true active=true]

Additional resources

polkit(8) and polkitd(8) man pages.

5.4. ADDITIONAL RESOURCES

Controlling access to smart cards Red Hat Blog article.

CHAPTER 5. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT

37

https://www.redhat.com/en/blog/controlling-access-smart-cards

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION
COMPLIANCE AND VULNERABILITIES

A compliance audit is a process of determining whether a given object follows all the rules specified in a
compliance policy. The compliance policy is defined by security professionals who specify the required
settings, often in the form of a checklist, that a computing environment should use.

Compliance policies can vary substantially across organizations and even across different systems within
the same organization. Differences among these policies are based on the purpose of each system and
its importance for the organization. Custom software settings and deployment characteristics also raise
a need for custom policy checklists.

6.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL

You can perform a fully automated compliance audit in Red Hat Enterprise Linux by using the following
configuration compliance tools. These tools are based on the Security Content Automation Protocol
(SCAP) standard and are designed for automated tailoring of compliance policies.

SCAP Workbench

The scap-workbench graphical utility is designed to perform configuration and vulnerability scans
on a single local or remote system. You can also use it to generate security reports based on these
scans and evaluations.

OpenSCAP

The OpenSCAP library, with the accompanying oscap command-line utility, is designed to perform
configuration and vulnerability scans on a local system, to validate configuration compliance content,
and to generate reports and guides based on these scans and evaluations.

IMPORTANT

You can experience memory-consumption problems while using OpenSCAP, which
can cause stopping the program prematurely and prevent generating any result files.
See the OpenSCAP memory-consumption problems Knowledgebase article for
details.

SCAP Security Guide (SSG)

The scap-security-guide package provides collections of security policies for Linux systems. The
guidance consists of a catalog of practical hardening advice, linked to government requirements
where applicable. The project bridges the gap between generalized policy requirements and specific
implementation guidelines.

Script Check Engine (SCE)

With SCE, which is an extension to the SCAP protocol, administrators can write their security content
by using a scripting language, such as Bash, Python, and Ruby. The SCE extension is provided in the
openscap-engine-sce package. The SCE itself is not part of the SCAP standard.

To perform automated compliance audits on multiple systems remotely, you can use the OpenSCAP
solution for Red Hat Satellite.

Additional resources

oscap(8), scap-workbench(8), and scap-security-guide(8) man pages on your system

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security

Red Hat Enterprise Linux 8 Security hardening

38

https://access.redhat.com/articles/6999111

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies

Managing security compliance in Red Hat Satellite

6.2. VULNERABILITY SCANNING

6.2.1. Red Hat Security Advisories OVAL feed

Red Hat Enterprise Linux security auditing capabilities are based on the Security Content Automation
Protocol (SCAP) standard. SCAP is a multi-purpose framework of specifications that supports
automated configuration, vulnerability and patch checking, technical control compliance activities, and
security measurement.

SCAP specifications create an ecosystem where the format of security content is well-known and
standardized although the implementation of the scanner or policy editor is not mandated. This enables
organizations to build their security policy (SCAP content) once, no matter how many security vendors
they employ.

The Open Vulnerability Assessment Language (OVAL) is the essential and oldest component of SCAP.
Unlike other tools and custom scripts, OVAL describes a required state of resources in a declarative
manner. OVAL code is never executed directly but using an OVAL interpreter tool called scanner. The
declarative nature of OVAL ensures that the state of the assessed system is not accidentally modified.

Like all other SCAP components, OVAL is based on XML. The SCAP standard defines several document
formats. Each of them includes a different kind of information and serves a different purpose.

Red Hat Product Security helps customers evaluate and manage risk by tracking and investigating all
security issues affecting Red Hat customers. It provides timely and concise patches and security
advisories on the Red Hat Customer Portal. Red Hat creates and supports OVAL patch definitions,
providing machine-readable versions of our security advisories.

Because of differences between platforms, versions, and other factors, Red Hat Product Security
qualitative severity ratings of vulnerabilities do not directly align with the Common Vulnerability Scoring
System (CVSS) baseline ratings provided by third parties. Therefore, we recommend that you use the
RHSA OVAL definitions instead of those provided by third parties.

The RHSA OVAL definitions are available individually and as a complete package, and are updated within
an hour of a new security advisory being made available on the Red Hat Customer Portal.

Each OVAL patch definition maps one-to-one to a Red Hat Security Advisory (RHSA). Because an
RHSA can contain fixes for multiple vulnerabilities, each vulnerability is listed separately by its Common
Vulnerabilities and Exposures (CVE) name and has a link to its entry in our public bug database.

The RHSA OVAL definitions are designed to check for vulnerable versions of RPM packages installed on
a system. It is possible to extend these definitions to include further checks, for example, to find out if
the packages are being used in a vulnerable configuration. These definitions are designed to cover
software and updates shipped by Red Hat. Additional definitions are required to detect the patch status
of third-party software.

NOTE

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

39

https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
https://docs.redhat.com/en/documentation/red_hat_satellite/6.15/html/managing_security_compliance/index
https://access.redhat.com/security/team/
https://www.redhat.com/security/data/oval/v2/

NOTE

The Red Hat Insights for Red Hat Enterprise Linux compliance service helps IT security
and compliance administrators to assess, monitor, and report on the security policy
compliance of Red Hat Enterprise Linux systems. You can also create and manage your
SCAP security policies entirely within the compliance service UI.

Additional resources

Red Hat and OVAL compatibility

Red Hat and CVE compatibility

Notifications and Advisories in the Product Security Overview

Security Data Metrics

6.2.2. Scanning the system for vulnerabilities

The oscap command-line utility enables you to scan local systems, validate configuration compliance
content, and generate reports and guides based on these scans and evaluations. This utility serves as a
front end to the OpenSCAP library and groups its functionalities to modules (sub-commands) based on
the type of SCAP content it processes.

Prerequisites

The openscap-scanner and bzip2 packages are installed.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

2. Scan the system for vulnerabilities and save results to the vulnerability.html file:

oscap oval eval --report vulnerability.html rhel-8.oval.xml

Verification

Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

oscap(8) man page on your system

Red Hat OVAL definitions

OpenSCAP memory consumption problems

Red Hat Enterprise Linux 8 Security hardening

40

https://docs.redhat.com/en/documentation/red_hat_insights/1-latest/html/assessing_and_monitoring_security_policy_compliance_of_rhel_systems/intro-compliance
https://access.redhat.com/articles/221883
https://access.redhat.com/articles/2123171
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/overview
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/oval/v2/RHEL8/
https://access.redhat.com/articles/6999111

6.2.3. Scanning remote systems for vulnerabilities

You can check remote systems for vulnerabilities with the OpenSCAP scanner by using the oscap-ssh
tool over the SSH protocol.

Prerequisites

The openscap-utils and bzip2 packages are installed on the system you use for scanning.

The openscap-scanner package is installed on the remote systems.

The SSH server is running on the remote systems.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

2. Scan a remote system for vulnerabilities and save the results to a file:

oscap-ssh <username>@<hostname> <port> oval eval --report <scan-report.html> rhel-
8.oval.xml

Replace:

<username>@<hostname> with the user name and host name of the remote system.

<port> with the port number through which you can access the remote system, for example,
22.

<scan-report.html> with the file name where oscap saves the scan results.

Additional resources

oscap-ssh(8)

Red Hat OVAL definitions

OpenSCAP memory consumption problems

6.3. CONFIGURATION COMPLIANCE SCANNING

6.3.1. Configuration compliance in RHEL

You can use configuration compliance scanning to conform to a baseline defined by a specific
organization. For example, if you work with the US government, you might have to align your systems
with the Operating System Protection Profile (OSPP), and if you are a payment processor, you might
have to align your systems with the Payment Card Industry Data Security Standard (PCI-DSS). You can
also perform configuration compliance scanning to harden your system security.

Red Hat recommends you follow the Security Content Automation Protocol (SCAP) content provided

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

41

https://www.redhat.com/security/data/oval/v2/RHEL8/
https://access.redhat.com/articles/6999111

Red Hat recommends you follow the Security Content Automation Protocol (SCAP) content provided
in the SCAP Security Guide package because it is in line with Red Hat best practices for affected
components.

The SCAP Security Guide package provides content which conforms to the SCAP 1.2 and SCAP 1.3
standards. The openscap scanner utility is compatible with both SCAP 1.2 and SCAP 1.3 content
provided in the SCAP Security Guide package.

IMPORTANT

Performing a configuration compliance scanning does not guarantee the system is
compliant.

The SCAP Security Guide suite provides profiles for several platforms in a form of data stream
documents. A data stream is a file that contains definitions, benchmarks, profiles, and individual rules.
Each rule specifies the applicability and requirements for compliance. RHEL provides several profiles for
compliance with security policies. In addition to the industry standard, Red Hat data streams also contain
information for remediation of failed rules.

Structure of compliance scanning resources

Data stream
 ├── xccdf
 | ├── benchmark
 | ├── profile
 | | ├──rule reference
 | | └──variable
 | ├── rule
 | ├── human readable data
 | ├── oval reference
 ├── oval ├── ocil reference
 ├── ocil ├── cpe reference
 └── cpe └── remediation

A profile is a set of rules based on a security policy, such as OSPP, PCI-DSS, and Health Insurance
Portability and Accountability Act (HIPAA). This enables you to audit the system in an automated way
for compliance with security standards.

You can modify (tailor) a profile to customize certain rules, for example, password length. For more
information about profile tailoring, see Customizing a security profile with SCAP Workbench .

6.3.2. Possible results of an OpenSCAP scan

Depending on the data stream and profile applied to an OpenSCAP scan, as well as various properties of
your system, each rule may produce a specific result. These are the possible results with brief
explanations of their meanings:

Pass

The scan did not find any conflicts with this rule.

Fail

The scan found a conflict with this rule.

Not checked

OpenSCAP does not perform an automatic evaluation of this rule. Check whether your system

Red Hat Enterprise Linux 8 Security hardening

42

OpenSCAP does not perform an automatic evaluation of this rule. Check whether your system
conforms to this rule manually.

Not applicable

This rule does not apply to the current configuration.

Not selected

This rule is not part of the profile. OpenSCAP does not evaluate this rule and does not display these
rules in the results.

Error

The scan encountered an error. For additional information, you can enter the oscap command with
the --verbose DEVEL option. File a support case on the Red Hat customer portal or open a ticket in
the RHEL project in Red Hat Jira .

Unknown

The scan encountered an unexpected situation. For additional information, you can enter the oscap
command with the `--verbose DEVEL option. File a support case on the Red Hat customer portal or
open a ticket in the RHEL project in Red Hat Jira .

6.3.3. Viewing profiles for configuration compliance

Before you decide to use profiles for scanning or remediation, you can list them and check their detailed
descriptions using the oscap info subcommand.

Prerequisites

The openscap-scanner and scap-security-guide packages are installed.

Procedure

1. List all available files with security compliance profiles provided by the SCAP Security Guide
project:

$ ls /usr/share/xml/scap/ssg/content/
ssg-firefox-cpe-dictionary.xml ssg-rhel6-ocil.xml
ssg-firefox-cpe-oval.xml ssg-rhel6-oval.xml
…
ssg-rhel6-ds-1.2.xml ssg-rhel8-oval.xml
ssg-rhel8-ds.xml ssg-rhel8-xccdf.xml
…

2. Display detailed information about a selected data stream using the oscap info subcommand.
XML files containing data streams are indicated by the -ds string in their names. In the Profiles
section, you can find a list of available profiles and their IDs:

$ oscap info /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
Profiles:
…
 Title: Health Insurance Portability and Accountability Act (HIPAA)
 Id: xccdf_org.ssgproject.content_profile_hipaa
 Title: PCI-DSS v3.2.1 Control Baseline for Red Hat Enterprise Linux 8
 Id: xccdf_org.ssgproject.content_profile_pci-dss
 Title: OSPP - Protection Profile for General Purpose Operating Systems
 Id: xccdf_org.ssgproject.content_profile_ospp
…

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

43

https://access.redhat.com/support/cases/
https://issues.redhat.com/projects/RHEL/issues
https://access.redhat.com/support/cases/
https://issues.redhat.com/projects/RHEL/issues

3. Select a profile from the data stream file and display additional details about the selected
profile. To do so, use oscap info with the --profile option followed by the last section of the ID
displayed in the output of the previous command. For example, the ID of the HIPPA profile is
xccdf_org.ssgproject.content_profile_hipaa, and the value for the --profile option is hipaa:

$ oscap info --profile hipaa /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
…
Profile
 Title: Health Insurance Portability and Accountability Act (HIPAA)

 Description: The HIPAA Security Rule establishes U.S. national standards to protect
individuals’ electronic personal health information that is created, received, used, or
maintained by a covered entity.
…

Additional resources

scap-security-guide(8) man page on your system

OpenSCAP memory consumption problems

6.3.4. Assessing configuration compliance with a specific baseline

You can determine whether your system or a remote system conforms to a specific baseline, and save
the results in a report by using the oscap command-line tool.

Prerequisites

The openscap-scanner and scap-security-guide packages are installed.

You know the ID of the profile within the baseline with which the system should comply. To find
the ID, see the Viewing profiles for configuration compliance section.

Procedure

1. Scan the local system for compliance with the selected profile and save the scan results to a file:

$ oscap xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace:

<scan-report.html> with the file name where oscap saves the scan results.

<profileID> with the profile ID with which the system should comply, for example, hipaa.

2. Optional: Scan a remote system for compliance with the selected profile and save the scan
results to a file:

$ oscap-ssh <username>@<hostname> <port> xccdf eval --report <scan-report.html> --
profile <profileID> /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace:

Red Hat Enterprise Linux 8 Security hardening

44

https://access.redhat.com/articles/6999111

<username>@<hostname> with the user name and host name of the remote system.

<port> with the port number through which you can access the remote system.

<scan-report.html> with the file name where oscap saves the scan results.

<profileID> with the profile ID with which the system should comply, for example, hipaa.

Additional resources

scap-security-guide(8) man page on your system

SCAP Security Guide documentation in the /usr/share/doc/scap-security-guide/ directory

/usr/share/doc/scap-security-guide/guides/ssg-rhel8-guide-index.html - [Guide to the
Secure Configuration of Red Hat Enterprise Linux 8] installed with the scap-security-guide-
doc package

OpenSCAP memory consumption problems

6.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE

You can remediate the RHEL system to align with a specific baseline. You can remediate the system to
align with any profile provided by the SCAP Security Guide. For the details on listing the available
profiles, see the Viewing profiles for configuration compliance section.

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed.

Procedure

1. Remediate the system by using the oscap command with the --remediate option:

oscap xccdf eval --profile <profileID> --remediate /usr/share/xml/scap/ssg/content/ssg-
rhel8-ds.xml

Replace <profileID> with the profile ID with which the system should comply, for example,
hipaa.

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

45

https://access.redhat.com/articles/6999111

2. Restart your system.

Verification

1. Evaluate compliance of the system with the profile, and save the scan results to a file:

$ oscap xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace:

<scan-report.html> with the file name where oscap saves the scan results.

<profileID> with the profile ID with which the system should comply, for example, hipaa.

Additional resources

scap-security-guide(8) and oscap(8) man pages on your system

Complementing the DISA benchmark using the SSG content Knowledgebase article

6.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE USING AN SSG ANSIBLE PLAYBOOK

You can remediate your system to align with a specific baseline by using an Ansible playbook file from
the SCAP Security Guide project. This example uses the Health Insurance Portability and Accountability
Act (HIPAA) profile, but you can remediate to align with any other profile provided by the SCAP Security
Guide. For the details on listing the available profiles, see the Viewing profiles for configuration
compliance section.

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed.

The ansible-core package is installed. See the Ansible Installation Guide for more information.

RHEL 8.6 or later is installed. For more information about installing RHEL, see Interactively
installing RHEL from installation media.

NOTE

Red Hat Enterprise Linux 8 Security hardening

46

https://access.redhat.com/articles/6677801
https://docs.ansible.com/ansible/latest/installation_guide/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html-single/interactively_installing_rhel_from_installation_media/index

NOTE

In RHEL 8.5 and earlier versions, Ansible packages were provided through Ansible
Engine instead of Ansible Core, and with a different level of support. Do not use
Ansible Engine because the packages might not be compatible with Ansible
automation content in RHEL 8.6 and later. For more information, see Scope of
support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and
later AppStream repositories.

Procedure

1. Remediate your system to align with HIPAA by using Ansible:

ansible-playbook -i localhost, -c local /usr/share/scap-security-guide/ansible/rhel8-
playbook-hipaa.yml

2. Restart the system.

Verification

1. Evaluate the compliance of the system with the HIPAA profile, and save the scan results to a
file:

oscap xccdf eval --profile hipaa --report <scan-report.html>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace <scan-report.html> with the file name where oscap saves the scan results.

Additional resources

scap-security-guide(8) and oscap(8) man pages on your system

Ansible Documentation

6.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE
SYSTEM WITH A SPECIFIC BASELINE

You can create an Ansible playbook containing only the remediations that are required to align your
system with a specific baseline. This playbook is smaller because it does not cover already satisfied
requirements. Creating the playbook does not modify your system in any way, you only prepare a file for
later application. This example uses the Health Insurance Portability and Accountability Act (HIPAA)
profile.

NOTE

In RHEL 8.6, Ansible Engine is replaced by the ansible-core package, which contains only
built-in modules. Note that many Ansible remediations use modules from the community
and Portable Operating System Interface (POSIX) collections, which are not included in
the built-in modules. In this case, you can use Bash remediations as a substitute for
Ansible remediations. The Red Hat Connector in RHEL 8.6 includes the Ansible modules
necessary for the remediation playbooks to function with Ansible Core.

Prerequisites

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

47

https://access.redhat.com/articles/6325611
https://docs.ansible.com/

The scap-security-guide package is installed.

Procedure

1. Scan the system and save the results:

oscap xccdf eval --profile hipaa --results <hipaa-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

2. Find the value of the result ID in the file with the results:

oscap info <hipaa-results.xml>

3. Generate an Ansible playbook based on the file generated in step 1:

oscap xccdf generate fix --fix-type ansible --result-id <xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_hipaa> --output <hipaa-
remediations.yml> <hipaa-results.xml>

4. Review the generated file, which contains the Ansible remediations for rules that failed during
the scan performed in step 1. After reviewing this generated file, you can apply it by using the
ansible-playbook <hipaa-remediations.yml> command.

Verification

In a text editor of your choice, review that the generated <hipaa-remediations.yml> file
contains rules that failed in the scan performed in step 1.

Additional resources

scap-security-guide(8) and oscap(8) man pages on your system

Ansible Documentation

6.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER
APPLICATION

Use this procedure to create a Bash script containing remediations that align your system with a security
profile such as HIPAA. Using the following steps, you do not do any modifications to your system, you
only prepare a file for later application.

Prerequisites

The scap-security-guide package is installed on your RHEL system.

Procedure

1. Use the oscap command to scan the system and to save the results to an XML file. In the
following example, oscap evaluates the system against the hipaa profile:

oscap xccdf eval --profile hipaa --results <hipaa-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Red Hat Enterprise Linux 8 Security hardening

48

https://docs.ansible.com/

2. Find the value of the result ID in the file with the results:

oscap info <hipaa-results.xml>

3. Generate a Bash script based on the results file generated in step 1:

oscap xccdf generate fix --fix-type bash --result-id <xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_hipaa> --output <hipaa-
remediations.sh> <hipaa-results.xml>

4. The <hipaa-remediations.sh> file contains remediations for rules that failed during the scan
performed in step 1. After reviewing this generated file, you can apply it with the ./<hipaa-
remediations.sh> command when you are in the same directory as this file.

Verification

In a text editor of your choice, review that the <hipaa-remediations.sh> file contains rules that
failed in the scan performed in step 1.

Additional resources

scap-security-guide(8), oscap(8), and bash(1) man pages on your system

6.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING
SCAP WORKBENCH

SCAP Workbench, which is contained in the scap-workbench package, is a graphical utility that
enables users to perform configuration and vulnerability scans on a single local or a remote system,
perform remediation of the system, and generate reports based on scan evaluations. Note that SCAP
Workbench has limited functionality compared with the oscap command-line utility. SCAP
Workbench processes security content in the form of data stream files.

6.8.1. Using SCAP Workbench to scan and remediate the system

To evaluate your system against the selected security policy, use the following procedure.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. To run SCAP Workbench from the GNOME Classic desktop environment, press the Super
key to enter the Activities Overview, type scap-workbench, and then press Enter.
Alternatively, use:

$ scap-workbench &

2. Select a security policy using either of the following options:

Load Content button on the starting window

Open content from SCAP Security Guide

Open Other Content in the File menu, and search the respective XCCDF, SCAP RPM, or

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

49

Open Other Content in the File menu, and search the respective XCCDF, SCAP RPM, or
data stream file.

3. You can allow automatic correction of the system configuration by selecting the Remediate
check box. With this option enabled, SCAP Workbench attempts to change the system
configuration in accordance with the security rules applied by the policy. This process should fix
the related checks that fail during the system scan.

WARNING

If not used carefully, running the system evaluation with the Remediate
option enabled might render the system non-functional. Red Hat does not
provide any automated method to revert changes made by security-
hardening remediations. Remediations are supported on RHEL systems in
the default configuration. If your system has been altered after the
installation, running remediation might not make it compliant with the
required security profile.

4. Scan your system with the selected profile by clicking the Scan button.

Red Hat Enterprise Linux 8 Security hardening

50

5. To store the scan results in form of an XCCDF, ARF, or HTML file, click the Save Results
combo box. Choose the HTML Report option to generate the scan report in human-readable
format. The XCCDF and ARF (data stream) formats are suitable for further automatic
processing. You can repeatedly choose all three options.

6. To export results-based remediations to a file, use the Generate remediation role pop-up
menu.

6.8.2. Customizing a security profile with SCAP Workbench

You can customize a security profile by changing parameters in certain rules (for example, minimum
password length), removing rules that you cover in a different way, and selecting additional rules, to
implement internal policies. You cannot define new rules by customizing a profile.

The following procedure demonstrates the use of SCAP Workbench for customizing (tailoring) a
profile. You can also save the tailored profile for use with the oscap command-line utility.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. Run SCAP Workbench, and select the profile to customize by using either Open content from
SCAP Security Guide or Open Other Content in the File menu.

2. To adjust the selected security profile according to your needs, click the Customize button.

This opens the new Customization window that enables you to modify the currently selected

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

51

This opens the new Customization window that enables you to modify the currently selected
profile without changing the original data stream file. Choose a new profile ID.

3. Find a rule to modify using either the tree structure with rules organized into logical groups or
the Search field.

4. Include or exclude rules using check boxes in the tree structure, or modify values in rules where
applicable.

5. Confirm the changes by clicking the OK button.

6. To store your changes permanently, use one of the following options:

Save a customization file separately by using Save Customization Only in the File menu.

Save all security content at once by Save All in the File menu.
If you select the Into a directory option, SCAP Workbench saves both the data stream file
and the customization file to the specified location. You can use this as a backup solution.

Red Hat Enterprise Linux 8 Security hardening

52

By selecting the As RPM option, you can instruct SCAP Workbench to create an RPM
package containing the data stream file and the customization file. This is useful for
distributing the security content to systems that cannot be scanned remotely, and for
delivering the content for further processing.

NOTE

Because SCAP Workbench does not support results-based remediations for tailored
profiles, use the exported remediations with the oscap command-line utility.

6.8.3. Additional resources

scap-workbench(8) man page on your system

/usr/share/doc/scap-workbench/user_manual.html file provided by the scap-workbench
package

Deploy customized SCAP policies with Satellite 6.x (Red Hat Knowledgebase)

6.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY
PROFILE IMMEDIATELY AFTER AN INSTALLATION

You can use the OpenSCAP suite to deploy RHEL systems that are compliant with a security profile,
such as OSPP, PCI-DSS, and HIPAA profile, immediately after the installation process. Using this
deployment method, you can apply specific rules that cannot be applied later using remediation scripts,
for example, a rule for password strength and partitioning.

6.9.1. Profiles not compatible with Server with GUI

Certain security profiles provided as part of the SCAP Security Guide are not compatible with the
extended package set included in the Server with GUI base environment. Therefore, do not select
Server with GUI when installing systems compliant with one of the following profiles:

Table 6.1. Profiles not compatible with Server with GUI

Profile name Profile ID Justification Notes

CIS Red Hat Enterprise
Linux 8 Benchmark for
Level 2 - Server

xccdf_org.ssgprojec
t.content_profile_cis

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

53

https://access.redhat.com/solutions/2377951

CIS Red Hat Enterprise
Linux 8 Benchmark for
Level 1 - Server

xccdf_org.ssgprojec
t.content_profile_cis
_server_l1

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

Unclassified Information
in Non-federal
Information Systems
and Organizations (NIST
800-171)

xccdf_org.ssgprojec
t.content_profile_cui

The nfs-utils package
is part of the Server
with GUI package set,
but the policy requires
its removal.

Protection Profile for
General Purpose
Operating Systems

xccdf_org.ssgprojec
t.content_profile_os
pp

The nfs-utils package
is part of the Server
with GUI package set,
but the policy requires
its removal.

DISA STIG for Red Hat
Enterprise Linux 8

xccdf_org.ssgprojec
t.content_profile_sti
g

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

To install a RHEL system
as a Server with GUI
aligned with DISA STIG
in RHEL version 8.4 and
later, you can use the
DISA STIG with GUI
profile.

Profile name Profile ID Justification Notes

6.9.2. Deploying baseline-compliant RHEL systems using the graphical installation

Use this procedure to deploy a RHEL system that is aligned with a specific baseline. This example uses
Protection Profile for General Purpose Operating System (OSPP).

WARNING

Certain security profiles provided as part of the SCAP Security Guide are not
compatible with the extended package set included in the Server with GUI base
environment. For additional details, see Profiles not compatible with a GUI server .

Red Hat Enterprise Linux 8 Security hardening

54

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening#ref_profiles-not-compatible-with-server-with-gui_deploying-systems-that-are-compliant-with-a-security-profile-immediately-after-an-installation

Prerequisites

You have booted into the graphical installation program. Note that the OSCAP Anaconda
Add-on does not support interactive text-only installation.

You have accessed the Installation Summary window.

Procedure

1. From the Installation Summary window, click Software Selection. The Software Selection
window opens.

2. From the Base Environment pane, select the Server environment. You can select only one
base environment.

3. Click Done to apply the setting and return to the Installation Summary window.

4. Because OSPP has strict partitioning requirements that must be met, create separate partitions
for /boot, /home, /var, /tmp, /var/log, /var/tmp, and /var/log/audit.

5. Click Security Policy. The Security Policy window opens.

6. To enable security policies on the system, toggle the Apply security policy switch to ON.

7. Select Protection Profile for General Purpose Operating Systems from the profile pane.

8. Click Select Profile to confirm the selection.

9. Confirm the changes in the Changes that were done or need to be done pane that is
displayed at the bottom of the window. Complete any remaining manual changes.

10. Complete the graphical installation process.

NOTE

The graphical installation program automatically creates a corresponding
Kickstart file after a successful installation. You can use the /root/anaconda-
ks.cfg file to automatically install OSPP-compliant systems.

Verification

To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

Configuring manual partitioning

6.9.3. Deploying baseline-compliant RHEL systems using Kickstart

You can deploy RHEL systems that are aligned with a specific baseline. This example uses Protection
Profile for General Purpose Operating System (OSPP).

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

55

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/interactively_installing_rhel_from_installation_media/index#storage-devices_customizing-the-system-in-the-installer

Prerequisites

The scap-security-guide package is installed on your RHEL 8 system.

Procedure

1. Open the /usr/share/scap-security-guide/kickstart/ssg-rhel8-ospp-ks.cfg Kickstart file in an
editor of your choice.

2. Update the partitioning scheme to fit your configuration requirements. For OSPP compliance,
the separate partitions for /boot, /home, /var, /tmp, /var/log, /var/tmp, and /var/log/audit must
be preserved, and you can only change the size of the partitions.

3. Start a Kickstart installation as described in Performing an automated installation using
Kickstart.

IMPORTANT

Passwords in Kickstart files are not checked for OSPP requirements.

Verification

To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

OSCAP Anaconda Add-on

Kickstart commands and options reference: %addon org_fedora_oscap

6.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR
VULNERABILITIES

Use this procedure to find security vulnerabilities in a container or a container image.

NOTE

The oscap-podman command is available from RHEL 8.2. For RHEL 8.1 and 8.0, use the
workaround described in the Using OpenSCAP for scanning containers in RHEL 8
Knowledgebase article.

Prerequisites

The openscap-utils and bzip2 packages are installed.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

Red Hat Enterprise Linux 8 Security hardening

56

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/automatically_installing_rhel/index#starting-kickstart-installations_rhel-installer
https://www.open-scap.org/tools/oscap-anaconda-addon/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/automatically_installing_rhel/index#addon-com_redhat_oscap_kickstart-commands-for-addons-supplied-with-the-rhel-installation-program
https://access.redhat.com/articles/4392051

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

2. Get the ID of a container or a container image, for example:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 096cae65a207 7 weeks ago 239 MB

3. Scan the container or the container image for vulnerabilities and save results to the
vulnerability.html file:

oscap-podman 096cae65a207 oval eval --report vulnerability.html rhel-8.oval.xml

Note that the oscap-podman command requires root privileges, and the ID of a container is the
first argument.

Verification

Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

For more information, see the oscap-podman(8) and oscap(8) man pages.

6.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A
CONTAINER IMAGE WITH A SPECIFIC BASELINE

You can assess the compliance of your container or a container image with a specific security baseline,
such as Operating System Protection Profile (OSPP), Payment Card Industry Data Security Standard
(PCI-DSS), and Health Insurance Portability and Accountability Act (HIPAA).

NOTE

The oscap-podman command is available from RHEL 8.2. For RHEL 8.1 and 8.0, use the
workaround described in the Using OpenSCAP for scanning containers in RHEL 8
Knowledgebase article.

Prerequisites

The openscap-utils and scap-security-guide packages are installed.

You have root access to the system.

Procedure

1. Find the ID of a container or a container image:

a. To find the ID of a container, enter the podman ps -a command.

b. To find the ID of a container image, enter the podman images command.

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

57

https://access.redhat.com/articles/4392051

2. Evaluate the compliance of the container or container image with a profile and save the scan
results into a file:

oscap-podman <ID> xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace:

<ID> with the ID of your container or container image

<scan-report.html> with the file name where oscap saves the scan results

<profileID> with the profile ID with which the system should comply, for example, hipaa,
ospp, or pci-dss

Verification

Check the results in a browser of your choice, for example:

$ firefox <scan-report.html> &

NOTE

The rules marked as notapplicable apply only to bare-metal and virtualized systems and
not to containers or container images.

Additional resources

oscap-podman(8) and scap-security-guide(8) man pages.

/usr/share/doc/scap-security-guide/ directory.

6.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8

Use only the SCAP content provided in the particular minor release of RHEL. This is because
components that participate in hardening are sometimes updated with new capabilities. SCAP content
changes to reflect these updates, but it is not always compatible with earlier versions.

In the following tables, you can find the profiles provided in each minor version of RHEL, together with
the version of the policy with which the profile aligns.

NOTE

You can get the information relevant for the version of scap-security-guide RPM
installed on your system by using the oscap info command. For more information, see
Viewing profiles for configuration compliance .

Table 6.2. SCAP Security Guide profiles supported in RHEL 8.10

Red Hat Enterprise Linux 8 Security hardening

58

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

3.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

59

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 8.10.0 to RHEL 8.10.4:4.0
RHEL 8.10.5 and later:4.0.1 RHEL
8.10.5 and later:4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

V2R2

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R2

Profile name Profile ID Policy version

Table 6.3. SCAP Security Guide profiles supported in RHEL 8.9

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 8.9.0 and RHEL 8.9.2:2.0.0
RHEL 8.9.3:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 8.9.0 and RHEL 8.9.2:2.0.0
RHEL 8.9.3:3.0.0

Red Hat Enterprise Linux 8 Security hardening

60

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 8.9.0 and RHEL 8.9.2:2.0.0
RHEL 8.9.3:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 8.9.0 and RHEL 8.9.2:2.0.0
RHEL 8.9.3:3.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 8.9.0 and RHEL 8.9.2:3.2.1
RHEL 8.9.3:4.0

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 8.9.0 and RHEL 8.9.2:V1R11
RHEL 8.9.3:V1R13

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 8.9.0 and RHEL 8.9.2:V1R11
RHEL 8.9.3:V1R13

Profile name Profile ID Policy version

Table 6.4. SCAP Security Guide profiles supported in RHEL 8.8

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

61

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 8.8.0 and RHEL 8.8.5:2.0.0
RHEL 8.8.6:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 8.8.0 and RHEL 8.8.5:2.0.0
RHEL 8.8.6:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 8.8.0 and RHEL 8.8.5:2.0.0
RHEL 8.8.6:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 8.8.0 and RHEL 8.8.5:2.0.0
RHEL 8.8.6:3.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 8.8.0 and RHEL 8.8.5:3.2.1
RHEL 8.8.6 to RHEL 8.8.12:4.0
RHEL 8.8.13 and later:4.0.1

Profile name Profile ID Policy version

Red Hat Enterprise Linux 8 Security hardening

62

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

V2R2

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R2

Profile name Profile ID Policy version

Table 6.5. SCAP Security Guide profiles supported in RHEL 8.7

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

2.0.0

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

63

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 8.7.0 and RHEL 8.7.1:V1R7
RHEL 8.7.2 and later:V1R9

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 8.7.0 and RHEL 8.7.1:V1R7
RHEL 8.7.2 and later:V1R9

Profile name Profile ID Policy version

Table 6.6. SCAP Security Guide profiles supported in RHEL 8.6

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

RHEL 8.6.0 to 8.6.10:1.2
RHEL 8.6.11 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 8.6.0 to 8.6.10:1.2
RHEL 8.6.11 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

RHEL 8.6.0 to 8.6.10:1.2
RHEL 8.6.11 and later:2.0

Red Hat Enterprise Linux 8 Security hardening

64

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

RHEL 8.6.0 to 8.6.10:1.2
RHEL 8.6.11 and later:2.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 8.6.0 to RHEL 8.6.2:1.0.0
RHEL 8.6.3 to RHEL 8.6.15:2.0.0
RHEL 8.6.16 and later:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 8.6.0 to RHEL 8.6.2:1.0.0
RHEL 8.6.3 to RHEL 8.6.15:2.0.0
RHEL 8.6.16 and later:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 8.6.0 to RHEL 8.6.2:1.0.0
RHEL 8.6.3 to RHEL 8.6.15:2.0.0
RHEL 8.6.16 and later:3.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 8.6.0 to RHEL 8.6.2:1.0.0
RHEL 8.6.3 to RHEL 8.6.15:2.0.0
RHEL 8.6.16 and later:3.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 8.6.0:V1R5
RHEL 8.6.1 and RHEL 8.6.2:V1R6
RHEL 8.6.3 to RHEL 8.6.6:V1R7
RHEL 8.6.7 to RHEL 8.6.10:V1R9
RHEL 8.6.11 to RHEL 8.6.15:V1R11
RHEL 8.6.16 and RHEL
8.6.17:V1R13
RHEL 8.6.18 and later:V1R14

Profile name Profile ID Policy version

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

65

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 8.6.0:V1R5
RHEL 8.6.1 and RHEL 8.6.2:V1R6
RHEL 8.6.3 to RHEL 8.6.6:V1R7
RHEL 8.6.7 to RHEL 8.6.10:V1R9
RHEL 8.6.11 to RHEL 8.6.15:V1R11
RHEL 8.6.16 and RHEL
8.6.17:V1R13
RHEL 8.6.18 and later:V1R14

Profile name Profile ID Policy version

Table 6.7. SCAP Security Guide profiles supported in RHEL 8.5

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

1.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

1.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

1.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Red Hat Enterprise Linux 8 Security hardening

66

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 8.5.0 to RHEL 8.5.3:V1R3
RHEL 8.5.4 and later:V1R5

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 8.5.0 to RHEL 8.5.3:V1R3
RHEL 8.5.4 and later:V1R5

Profile name Profile ID Policy version

Table 6.8. SCAP Security Guide profiles supported in RHEL 8.4

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 8.4.4 and later:1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

67

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 8.4.3 and earlier:1.0.0
RHEL 8.4.4 to RHEL 8.4.10:1.0.1
RHEL 8.4.11 and later:2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 8.4.4 to RHEL 8.4.10:1.0.1
RHEL 8.4.11 and later:2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 8.4.4 to RHEL 8.4.10:1.0.1
RHEL 8.4.11 and later:2.0.0

CIS Red Hat Enterprise Linux 8
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 8.4.4 to RHEL 8.4.10:1.0.1
RHEL 8.4.11 and later:2.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

RHEL 8.4.4 and later:not
versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 8.4.3 and earlier:V1R1
RHEL 8.4.4 to RHEL 8.4.7:V1R3
RHEL 8.4.8:V1R5
RHEL 8.4.9 to RHEL 8.4.10:V1R6
RHEL 8.4.11 to RHEL 8.4.14:V1R7
RHEL 8.4.15 and later:V1R9

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 8.4.4 to RHEL 8.4.7:V1R3
RHEL 8.4.8:V1R5
RHEL 8.4.9 to RHEL 8.4.10:V1R6
RHEL 8.4.11 to RHEL 8.4.14:V1R7
RHEL 8.4.15 and later:V1R9

Profile name Profile ID Policy version

Table 6.9. SCAP Security Guide profiles supported in RHEL 8.3

Red Hat Enterprise Linux 8 Security hardening

68

Profile name Profile ID Policy version

CIS Red Hat Enterprise Linux 8
Benchmark

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[DRAFT] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

draft

Table 6.10. SCAP Security Guide profiles supported in RHEL 8.2

Profile name Profile ID Policy version

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[DRAFT] DISA STIG for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

draft

Table 6.11. SCAP Security Guide profiles supported in RHEL 8.1

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

69

Profile name Profile ID Policy version

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

Table 6.12. SCAP Security Guide profiles supported in RHEL 8.0

Profile name Profile ID Policy version

OSPP - Protection Profile for
General Purpose Operating
Systems

xccdf_org.ssgproject.conten
t_profile_ospp

draft

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

6.13. ADDITIONAL RESOURCES

Supported versions of the SCAP Security Guide in RHEL

The OpenSCAP project page provides detailed information about the oscap utility and other
components and projects related to SCAP.

The SCAP Workbench project page provides detailed information about the scap-workbench
application.

The SCAP Security Guide (SSG) project page provides the latest security content for Red Hat
Enterprise Linux.

Using OpenSCAP for security compliance and vulnerability scanning - A hands-on lab on
running tools based on the Security Content Automation Protocol (SCAP) standard for
compliance and vulnerability scanning in RHEL.

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance - A hands-on lab to get initial experience in automating security compliance using
the tools that are included in RHEL to comply with both industry standard security policies and
custom security policies. If you want training or access to these lab exercises for your team,
contact your Red Hat account team for additional details.

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies - A hands-on lab to
learn how to implement security at all levels of your RHEL system, using the key security
technologies available to you in RHEL, including OpenSCAP. If you want training or access to
these lab exercises for your team, contact your Red Hat account team for additional details.

National Institute of Standards and Technology (NIST) SCAP page has a vast collection of
SCAP-related materials, including SCAP publications, specifications, and the SCAP Validation
Program.

Red Hat Enterprise Linux 8 Security hardening

70

https://access.redhat.com/articles/6337261
http://www.open-scap.org
https://www.open-scap.org/tools/scap-workbench/
https://www.open-scap.org/security-policies/scap-security-guide/
https://lab.redhat.com/tracks/openscap
https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
http://scap.nist.gov/

National Vulnerability Database (NVD) has the largest repository of SCAP content and other
SCAP standards-based vulnerability management data.

Red Hat OVAL content repository contains OVAL definitions for vulnerabilities of RHEL
systems. This is the recommended source of vulnerability content.

MITRE CVE - This is a database of publicly known security vulnerabilities provided by the MITRE
corporation. For RHEL, using OVAL CVE content provided by Red Hat is recommended.

MITRE OVAL - This is an OVAL-related project provided by the MITRE corporation. Among
other OVAL-related information, these pages contain the OVAL language and a repository of
OVAL content with thousands of OVAL definitions. Note that for scanning RHEL, using OVAL
CVE content provided by Red Hat is recommended.

Managing security compliance in Red Hat Satellite - This set of guides describes, among other
topics, how to maintain system security on multiple systems by using OpenSCAP.

CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

71

http://nvd.nist.gov/
http://www.redhat.com/security/data/oval/
http://cve.mitre.org/
http://oval.mitre.org/
https://docs.redhat.com/en/documentation/red_hat_satellite/6.15/html/managing_security_compliance/index

CHAPTER 7. CHECKING INTEGRITY WITH AIDE
Advanced Intrusion Detection Environment (AIDE) is a utility that creates a database of files on the
system, and then uses that database to ensure file integrity and detect system intrusions.

7.1. INSTALLING AIDE

To start file-integrity checking with AIDE, you must install the corresponding package and initiate the
AIDE database.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the aide package:

yum install aide

2. Generate an initial database:

aide --init
Start timestamp: 2024-07-08 10:39:23 -0400 (AIDE 0.16)
AIDE initialized database at /var/lib/aide/aide.db.new.gz

Number of entries: 55856

The attributes of the (uncompressed) database(s):

/var/lib/aide/aide.db.new.gz
…
 SHA512 : mZaWoGzL2m6ZcyyZ/AXTIowliEXWSZqx
 IFYImY4f7id4u+Bq8WeuSE2jasZur/A4
 FPBFaBkoCFHdoE/FW/V94Q==

3. Optional: In the default configuration, the aide --init command checks just a set of directories
and files defined in the /etc/aide.conf file. To include additional directories or files in the AIDE
database, and to change their watched parameters, edit /etc/aide.conf accordingly.

4. To start using the database, remove the .new substring from the initial database file name:

mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

5. Optional: To change the location of the AIDE database, edit the /etc/aide.conf file and modify
the DBDIR value. For additional security, store the database, configuration, and the
/usr/sbin/aide binary file in a secure location such as a read-only media.

7.2. PERFORMING INTEGRITY CHECKS WITH AIDE

You can use the crond service to schedule regular file-integrity checks with AIDE.

Red Hat Enterprise Linux 8 Security hardening

72

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

1. To initiate a manual check:

aide --check
Start timestamp: 2024-07-08 10:43:46 -0400 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Summary:
 Total number of entries: 55856
 Added entries: 0
 Removed entries: 0
 Changed entries: 1

Changed entries:

f S : /root/.viminfo

Detailed information about changes:

File: /root/.viminfo
 SELinux : system_u:object_r:admin_home_t:s | unconfined_u:object_r:admin_home
 0 | _t:s0
…

2. At a minimum, configure the system to run AIDE weekly. Optimally, run AIDE daily. For example,
to schedule a daily execution of AIDE at 04:05 a.m. by using the cron command, add the
following line to the /etc/crontab file:

 05 4 * * * root /usr/sbin/aide --check

Additional resources

cron(8) man page on your system

7.3. UPDATING AN AIDE DATABASE

After verifying the changes of your system, such as package updates or configuration files adjustments,
update also your baseline AIDE database.

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

CHAPTER 7. CHECKING INTEGRITY WITH AIDE

73

1. Update your baseline AIDE database:

aide --update

The aide --update command creates the /var/lib/aide/aide.db.new.gz database file.

2. To start using the updated database for integrity checks, remove the .new substring from the
file name.

7.4. FILE-INTEGRITY TOOLS: AIDE AND IMA

Red Hat Enterprise Linux provides several tools for checking and preserving the integrity of files and
directories on your system. The following table helps you decide which tool better fits your scenario.

Table 7.1. Comparison between AIDE and IMA

Question Advanced Intrusion Detection
Environment (AIDE)

Integrity Measurement Architecture (IMA)

What AIDE is a utility that creates a database of
files and directories on the system. This
database serves for checking file integrity
and detect intrusion detection.

IMA detects if a file is altered by checking file
measurement (hash values) compared to
previously stored extended attributes.

How AIDE uses rules to compare the integrity
state of the files and directories.

IMA uses file hash values to detect the
intrusion.

Why Detection - AIDE detects if a file is modified
by verifying the rules.

Detection and Prevention - IMA detects and
prevents an attack by replacing the extended
attribute of a file.

Usage AIDE detects a threat when the file or
directory is modified.

IMA detects a threat when someone tries to
alter the entire file.

Extension AIDE checks the integrity of files and
directories on the local system.

IMA ensures security on the local and remote
systems.

7.5. ADDITIONAL RESOURCES

aide(1) man page on your system

Kernel integrity subsystem

Red Hat Enterprise Linux 8 Security hardening

74

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL
INTEGRITY SUBSYSTEM

You can improve the protection of your system by using components of the kernel integrity subsystem.
Learn more about the relevant components and their configuration.

8.1. THE KERNEL INTEGRITY SUBSYSTEM

The integrity subsystem is the kernel component that maintains the overall integrity of system data.
This subsystem helps in maintaining the system in the same state from the time it was built. Using this
subsystem, you can protect executable files, libraries, and configuration files.

The kernel integrity subsystem consists of two major components:

Integrity Measurement Architecture (IMA)

IMA measures file content whenever it is executed or accessed by cryptographically hashing
or signing with cryptographic keys. The keys are stored in the kernel keyring subsystem.

IMA places the measured values within the kernel’s memory space. This prevents users of the
system from modifying the measured values.

IMA allows local and remote parties to verify the measured values.

IMA provides local validation of the current content of files against the values previously
stored in the measurement list within the kernel memory. This extension forbids performing
any operation on a specific file in case the current and the previous measures do not match.

Extended Verification Module (EVM)

EVM protects extended attributes of files (also known as xattr) related to system security,
such as IMA measurements and SELinux attributes. EVM cryptographically hashes their
corresponding values or signs them with cryptographic keys. The keys are stored in the
kernel keyring subsystem.

The kernel integrity subsystem can use the Trusted Platform Module (TPM) to further harden system
security.

A TPM is a hardware, firmware, or virtual component with integrated cryptographic keys that are built
according to the TPM specification by the Trusted Computing Group (TCG) for important
cryptographic functions. By providing cryptographic functions from a protected and tamper-proof area
of the hardware chip, TPMs are protected from software-based attacks. TPMs provide the following
features:

Random-number generator

Generator and secure storage for cryptographic keys

Hashing generator

Remote attestation

Additional resources

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

75

Security hardening

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

8.2. TRUSTED AND ENCRYPTED KEYS

Trusted keys and encrypted keys are an important part of enhancing system security.

Trusted and encrypted keys are variable-length symmetric keys generated by the kernel that use the
kernel keyring service. You can verify the integrity of the keys, for example, to allow the extended
verification module (EVM) to verify and confirm the integrity of a running system. User-level programs
can only access the keys in the form of encrypted blobs.

Trusted keys

Trusted keys need the Trusted Platform Module (TPM) chip, which is used to both create and
encrypt (seal) the keys. Each TPM has a master wrapping key, called the storage root key, which is
stored within the TPM itself.

NOTE

Red Hat Enterprise Linux 8 supports both TPM 1.2 and TPM 2.0. For more
information, see the Red Hat Knowledgebase solution Is Trusted Platform Module
(TPM) supported by Red Hat?.

You can verify the status of TPM 2.0 chip:

$ cat /sys/class/tpm/tpm0/tpm_version_major
2

You can also enable a TPM 2.0 chip and manage the TPM 2.0 device through settings in the machine
firmware.

In addition to that, you can seal the trusted keys with a specific set of the TPM’s platform
configuration register (PCR) values. PCR contains a set of integrity-management values that reflect
the firmware, boot loader, and operating system. PCR-sealed keys can only be decrypted by the
TPM on the system where they were encrypted. However, when you load a PCR-sealed trusted key
to a keyring, its associated PCR values are verified. After verification, you can update the key with
new or future PCR values, for example, to support booting a new kernel. Also, you can save a single
key as multiple blobs, each with a different PCR value.

Encrypted keys

Encrypted keys do not require a TPM, because they use the kernel Advanced Encryption Standard
(AES), which makes them faster than trusted keys. Encrypted keys are created using kernel-
generated random numbers and encrypted by a master key when they are exported into user-space
blobs.

The master key is either a trusted key or a user key. If the master key is not trusted, the security of the
encrypted key depends on the user key that was used to encrypt it.

8.3. WORKING WITH TRUSTED KEYS

You can improve system security by using the keyctl utility to create, export, load and update trusted
keys.

Red Hat Enterprise Linux 8 Security hardening

76

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/index
https://access.redhat.com/solutions/253363

Prerequisites

For the 64-bit ARM architecture and IBM Z, the trusted kernel module is loaded.

modprobe trusted

For more information about how to load kernel modules, see Loading kernel modules at system
runtime.

Trusted Platform Module (TPM) is enabled and active. See The kernel integrity subsystem and
Trusted and encrypted keys.

NOTE

Red Hat Enterprise Linux 8 supports both TPM 1.2 and TPM 2.0. If you use TPM 1.2, skip
step 1.

Procedure

1. Create a 2048-bit RSA key with an SHA-256 primary storage key with a persistent handle of, for
example, 81000001, by using one of the following utilities:

a. By using the tss2 package:

TPM_DEVICE=/dev/tpm0 tsscreateprimary -hi o -st
Handle 80000000
TPM_DEVICE=/dev/tpm0 tssevictcontrol -hi o -ho 80000000 -hp 81000001

b. By using the tpm2-tools package:

tpm2_createprimary --key-algorithm=rsa2048 --key-context=key.ctxt
name-alg:
 value: sha256
 raw: 0xb
…
sym-keybits: 128
rsa: xxxxxx…

tpm2_evictcontrol -c key.ctxt 0x81000001
persistentHandle: 0x81000001
action: persisted

2. Create a trusted key:

a. By using a TPM 2.0 with the syntax of keyctl add trusted <NAME> "new <KEY_LENGTH>
keyhandle=<PERSISTENT-HANDLE> [options]" <KEYRING>. In this example, the
persistent handle is 81000001.

keyctl add trusted kmk "new 32 keyhandle=0x81000001" @u
642500861

The command creates a trusted key called kmk with the length of 32 bytes (256 bits) and
places it in the user keyring (@u). The keys may have a length of 32 to 128 bytes (256 to
1024 bits).

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#loading-kernel-modules-at-system-runtime_managing-kernel-modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#the-kernel-integrity-subsystem_enhancing-security-with-the-kernel-integrity-subsystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#trusted-and-encrypted-keys_enhancing-security-with-the-kernel-integrity-subsystem

b. By using a TPM 1.2 with the syntax of keyctl add trusted <NAME> "new <KEY_LENGTH>"
<KEYRING>:

keyctl add trusted kmk "new 32" @u

3. List the current structure of the kernel keyrings:

keyctl show
Session Keyring
 -3 --alswrv 500 500 keyring: ses 97833714 --alswrv 500 -1 \ keyring: uid.1000
642500861 --alswrv 500 500 \ trusted: kmk

4. Export the key to a user-space blob by using the serial number of the trusted key:

keyctl pipe 642500861 > kmk.blob

The command uses the pipe subcommand and the serial number of kmk.

5. Load the trusted key from the user-space blob:

keyctl add trusted kmk "load `cat kmk.blob`" @u
268728824

6. Create secure encrypted keys that use the TPM-sealed trusted key (kmk). Follow this syntax:
keyctl add encrypted <NAME> "new [FORMAT] <KEY_TYPE>:<PRIMARY_KEY_NAME>
<KEY_LENGTH>" <KEYRING>:

keyctl add encrypted encr-key "new trusted:kmk 32" @u
159771175

Additional resources

the keyctl(1) manual page

8.4. WORKING WITH ENCRYPTED KEYS

You can improve system security on systems where a Trusted Platform Module (TPM) is not available by
managing encrypted keys.

Encrypted keys, unless sealed by a trusted primary key, inherit the security level of the user primary key
(random-number key) used for encryption. Therefore, it is highly recommended to load the primary user
key securely, ideally early in the boot process.

Prerequisites

For the 64-bit ARM architecture and IBM Z, the encrypted-keys kernel module is loaded:

modprobe encrypted-keys

For more information about how to load kernel modules, see Loading kernel modules at system
runtime.

Red Hat Enterprise Linux 8 Security hardening

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#loading-kernel-modules-at-system-runtime_managing-kernel-modules

Procedure

1. Generate a user key by using a random sequence of numbers:

keyctl add user kmk-user "$(dd if=/dev/urandom bs=1 count=32 2>/dev/null)" @u
427069434

The command generates a user key called kmk-user which acts as a primary key and is used to
seal the actual encrypted keys.

2. Generate an encrypted key using the primary key from the previous step:

keyctl add encrypted encr-key "new user:kmk-user 32" @u
1012412758

Verification

1. List all keys in the specified user keyring:

keyctl list @u
2 keys in keyring:
427069434: --alswrv 1000 1000 user: kmk-user
1012412758: --alswrv 1000 1000 encrypted: encr-key

Additional resources

The keyctl(1) manual page

8.5. ENABLING IMA AND EVM

You can enable and configure Integrity measurement architecture (IMA) and extended verification
module (EVM) to improve the security of the operating system.

IMPORTANT

Always enable EVM together with IMA.

Although you can enable EVM alone, EVM appraisal is only triggered by an IMA appraisal
rule. Therefore, EVM does not protect file metadata such as SELinux attributes. If file
metadata is tampered with offline, EVM can only prevent file metadata changes. It does
not prevent file access, such as executing the file.

Prerequisites

Secure Boot is temporarily disabled.

NOTE

When Secure Boot is enabled, the ima_appraise=fix kernel command-line
parameter does not work.

The securityfs file system is mounted on the /sys/kernel/security/ directory and the

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

79

The securityfs file system is mounted on the /sys/kernel/security/ directory and the
/sys/kernel/security/integrity/ima/ directory exists. You can verify where securityfs is mounted
by using the mount command:

mount
...
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
...

The systemd service manager is patched to support IMA and EVM on boot time. Verify by using
the following command:

grep <options> pattern <files>

For example:

dmesg | grep -i -e EVM -e IMA -w
[0.598533] ima: No TPM chip found, activating TPM-bypass!
[0.599435] ima: Allocated hash algorithm: sha256
[0.600266] ima: No architecture policies found
[0.600813] evm: Initialising EVM extended attributes:
[0.601581] evm: security.selinux
[0.601963] evm: security.ima
[0.602353] evm: security.capability
[0.602713] evm: HMAC attrs: 0x1
[1.455657] systemd[1]: systemd 239 (239-74.el8_8) running in system mode. (+PAM
+AUDIT +SELINUX +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP
+GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -
IDN +PCRE2 default-hierarchy=legacy)
[2.532639] systemd[1]: systemd 239 (239-74.el8_8) running in system mode. (+PAM
+AUDIT +SELINUX +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP
+GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -
IDN +PCRE2 default-hierarchy=legacy)

Procedure

1. Enable IMA and EVM in the fix mode for the current boot entry and allow users to gather
and update the IMA measurements by adding the following kernel command-line
parameters:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --
args="ima_policy=appraise_tcb ima_appraise=fix evm=fix"

The command enables IMA and EVM in the fix mode for the current boot entry to gather
and update the IMA measurements.

The ima_policy=appraise_tcb kernel command-line parameter ensures that the kernel
uses the default Trusted Computing Base (TCB) measurement policy and the appraisal
step. The appraisal step forbids access to files whose prior and current measures do not
match.

2. Reboot to make the changes come into effect.

3. Optional: Verify the parameters added to the kernel command line:

Red Hat Enterprise Linux 8 Security hardening

80

cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-167.el8.x86_64 root=/dev/mapper/rhel-root
ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap rhgb quiet ima_policy=appraise_tcb ima_appraise=fix evm=fix

4. Create a kernel master key to protect the EVM key:

keyctl add user kmk "$(dd if=/dev/urandom bs=1 count=32 2> /dev/null)" @u
748544121

The kmk is kept entirely in the kernel space memory. The 32-byte long value of the kmk is
generated from random bytes from the /dev/urandom file and placed in the user (@u)
keyring. The key serial number is on the first line of the previous output.

5. Create an encrypted EVM key based on the kmk:

keyctl add encrypted evm-key "new user:kmk 64" @u
641780271

The command uses the kmk to generate and encrypt a 64-byte long user key (named evm-
key) and places it in the user (@u) keyring. The key serial number is on the first line of the
previous output.

IMPORTANT

It is necessary to name the user key as evm-key because that is the name
the EVM subsystem is expecting and is working with.

6. Create a directory for exported keys.

mkdir -p /etc/keys/

7. Search for the kmk and export its unencrypted value into the new directory.

keyctl pipe $(keyctl search @u user kmk) > /etc/keys/kmk

8. Search for the evm-key and export its encrypted value into the new directory.

keyctl pipe $(keyctl search @u encrypted evm-key) > /etc/keys/evm-key

The evm-key has been encrypted by the kernel master key earlier.

9. Optional: View the newly created keys:

keyctl show
Session Keyring
974575405 --alswrv 0 0 keyring: ses 299489774 --alswrv 0 65534 \ keyring:
uid.0 748544121 --alswrv 0 0 \ user: kmk
641780271 --alswrv 0 0 _ encrypted: evm-key

ls -l /etc/keys/

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

81

total 8
-rw-r--r--. 1 root root 246 Jun 24 12:44 evm-key
-rw-r--r--. 1 root root 32 Jun 24 12:43 kmk

10. Optional: If the keys are removed from the keyring, for example after system reboot, you
can import the already exported kmk and evm-key instead of creating new ones.

a. Import the kmk.

keyctl add user kmk "$(cat /etc/keys/kmk)" @u
451342217

b. Import the evm-key.

keyctl add encrypted evm-key "load $(cat /etc/keys/evm-key)" @u
924537557

11. Activate EVM.

echo 1 > /sys/kernel/security/evm

12. Relabel the whole system.

find / -fstype xfs -type f -uid 0 -exec head -n 1 '{}' >/dev/null \;

WARNING

Enabling IMA and EVM without relabeling the system might make the
majority of the files on the system inaccessible.

Verification

Verify that EVM has been initialized:

dmesg | tail -1
[…] evm: key initialized

8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT
ARCHITECTURE

In the measurement phase, you can create file hashes and store them as extended attributes (xattrs) of
those files. With the file hashes, you can generate either an RSA-based digital signature or a Hash-based
Message Authentication Code (HMAC-SHA1) and prevent offline tampering attacks on the extended
attributes.

Prerequisites

IMA and EVM are enabled. For more information, see Enabling integrity measurement

Red Hat Enterprise Linux 8 Security hardening

82

IMA and EVM are enabled. For more information, see Enabling integrity measurement
architecture and extended verification module.

A valid trusted key or encrypted key is stored in the kernel keyring.

The ima-evm-utils, attr, and keyutils packages are installed.

Procedure

1. Create a test file:

echo <Test_text> > test_file

IMA and EVM ensure that the test_file example file has assigned hash values that are stored as
its extended attributes.

2. Inspect the file’s extended attributes:

getfattr -m . -d test_file
file: test_file
security.evm=0sAnDIy4VPA0HArpPO/EqiutnNyBql
security.ima=0sAQOEDeuUnWzwwKYk+n66h/vby3eD

The example output shows extended attributes with the IMA and EVM hash values and SELinux
context. EVM adds a security.evm extended attribute related to the other attributes. At this
point, you can use the evmctl utility on security.evm to generate either an RSA-based digital
signature or a Hash-based Message Authentication Code (HMAC-SHA1).

Additional resources

Security hardening

CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#enabling-integrity-measurement-architecture-and-extended-verification-module_enhancing-security-with-the-kernel-integrity-subsystem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS
By using the disk encryption, you can protect the data on a block device by encrypting it. To access the
device’s decrypted contents, enter a passphrase or key as authentication. This is important for mobile
computers and removable media because it helps to protect the device’s contents even if it has been
physically removed from the system. The LUKS format is a default implementation of block device
encryption in Red Hat Enterprise Linux.

9.1. LUKS DISK ENCRYPTION

Linux Unified Key Setup-on-disk-format (LUKS) provides a set of tools that simplifies managing the
encrypted devices. With LUKS, you can encrypt block devices and enable multiple user keys to decrypt a
master key. For bulk encryption of the partition, use this master key.

Red Hat Enterprise Linux uses LUKS to perform block device encryption. By default, the option to
encrypt the block device is unchecked during the installation. If you select the option to encrypt your
disk, the system prompts you for a passphrase every time you boot the computer. This passphrase
unlocks the bulk encryption key that decrypts your partition. If you want to modify the default partition
table, you can select the partitions that you want to encrypt. This is set in the partition table settings.

Ciphers

The default cipher used for LUKS is aes-xts-plain64. The default key size for LUKS is 512 bits. The
default key size for LUKS with Anaconda XTS mode is 512 bits. The following are the available ciphers:

Advanced Encryption Standard (AES)

Twofish

Serpent

Operations performed by LUKS

LUKS encrypts entire block devices and is therefore well-suited for protecting contents of
mobile devices such as removable storage media or laptop disk drives.

The underlying contents of the encrypted block device are arbitrary, which makes it useful for
encrypting swap devices. This can also be useful with certain databases that use specially
formatted block devices for data storage.

LUKS uses the existing device mapper kernel subsystem.

LUKS provides passphrase strengthening, which protects against dictionary attacks.

LUKS devices contain multiple key slots, which means you can add backup keys or passphrases.

IMPORTANT

Red Hat Enterprise Linux 8 Security hardening

84

IMPORTANT

LUKS is not recommended for the following scenarios:

Disk-encryption solutions such as LUKS protect the data only when your system
is off. After the system is on and LUKS has decrypted the disk, the files on that
disk are available to anyone who have access to them.

Scenarios that require multiple users to have distinct access keys to the same
device. The LUKS1 format provides eight key slots and LUKS2 provides up to 32
key slots.

Applications that require file-level encryption.

Additional resources

LUKS Project Home Page

LUKS On-Disk Format Specification

FIPS 197: Advanced Encryption Standard (AES)

9.2. LUKS VERSIONS IN RHEL

In Red Hat Enterprise Linux, the default format for LUKS encryption is LUKS2. The old LUKS1 format
remains fully supported and it is provided as a format compatible with earlier Red Hat Enterprise Linux
releases. LUKS2 re-encryption is considered more robust and safe to use as compared to LUKS1 re-
encryption.

The LUKS2 format enables future updates of various parts without a need to modify binary structures.
Internally it uses JSON text format for metadata, provides redundancy of metadata, detects metadata
corruption, and automatically repairs from a metadata copy.

IMPORTANT

Do not use LUKS2 in systems that support only LUKS1 because LUKS2 and LUKS1 use
different commands to encrypt the disk. Using the wrong command for a LUKS version
might cause data loss.

Table 9.1. Encryption commands depending on the LUKS version

LUKS version Encryption command

LUKS2 cryptsetup reencrypt

LUKS1 cryptsetup-reencrypt

Online re-encryption

The LUKS2 format supports re-encrypting encrypted devices while the devices are in use. For example,
you do not have to unmount the file system on the device to perform the following tasks:

Changing the volume key

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

85

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1

Changing the encryption algorithm
When encrypting a non-encrypted device, you must still unmount the file system. You can
remount the file system after a short initialization of the encryption.

The LUKS1 format does not support online re-encryption.

Conversion

In certain situations, you can convert LUKS1 to LUKS2. The conversion is not possible specifically in the
following scenarios:

A LUKS1 device is marked as being used by a Policy-Based Decryption (PBD) Clevis solution.
The cryptsetup tool does not convert the device when some luksmeta metadata are detected.

A device is active. The device must be in an inactive state before any conversion is possible.

9.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-
ENCRYPTION

LUKS2 provides several options that prioritize performance or data protection during the re-encryption
process. It provides the following modes for the resilience option, and you can select any of these
modes by using the cryptsetup reencrypt --resilience resilience-mode /dev/sdx command:

checksum

The default mode. It balances data protection and performance.
This mode stores individual checksums of the sectors in the re-encryption area, which the recovery
process can detect for the sectors that were re-encrypted by LUKS2. The mode requires that the
block device sector write is atomic.

journal

The safest mode but also the slowest. Since this mode journals the re-encryption area in the binary
area, the LUKS2 writes the data twice.

none

The none mode prioritizes performance and provides no data protection. It protects the data only
against safe process termination, such as the SIGTERM signal or the user pressing Ctrl+C key. Any
unexpected system failure or application failure might result in data corruption.

If a LUKS2 re-encryption process terminates unexpectedly by force, LUKS2 can perform the recovery in
one of the following ways:

Automatically

By performing any one of the following actions triggers the automatic recovery action during the
next LUKS2 device open action:

Executing the cryptsetup open command.

Attaching the device with the systemd-cryptsetup command.

Manually

By using the cryptsetup repair /dev/sdx command on the LUKS2 device.

Additional resources

Red Hat Enterprise Linux 8 Security hardening

86

cryptsetup-reencrypt(8) and cryptsetup-repair(8) man pages on your system

9.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2

You can encrypt the existing data on a not yet encrypted device by using the LUKS2 format. A new
LUKS header is stored in the head of the device.

Prerequisites

The block device has a file system.

You have backed up your data.

WARNING

You might lose your data during the encryption process due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

Procedure

1. Unmount all file systems on the device that you plan to encrypt, for example:

umount /dev/mapper/vg00-lv00

2. Make free space for storing a LUKS header. Use one of the following options that suits your
scenario:

In the case of encrypting a logical volume, you can extend the logical volume without
resizing the file system. For example:

lvextend -L+32M /dev/mapper/vg00-lv00

Extend the partition by using partition management tools, such as parted.

Shrink the file system on the device. You can use the resize2fs utility for the ext2, ext3, or
ext4 file systems. Note that you cannot shrink the XFS file system.

3. Initialize the encryption:

cryptsetup reencrypt --encrypt --init-only --reduce-device-size 32M /dev/mapper/vg00-lv00
lv00_encrypted

/dev/mapper/lv00_encrypted is now active and ready for online encryption.

4. Mount the device:

mount /dev/mapper/lv00_encrypted /mnt/lv00_encrypted

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

87

5. Add an entry for a persistent mapping to the /etc/crypttab file:

a. Find the luksUUID:

cryptsetup luksUUID /dev/mapper/vg00-lv00

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325

b. Open /etc/crypttab in a text editor of your choice and add a device in this file:

$ vi /etc/crypttab

lv00_encrypted UUID=a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 none

Replace a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 with your device’s luksUUID.

c. Refresh initramfs with dracut:

$ dracut -f --regenerate-all

6. Add an entry for a persistent mounting to the /etc/fstab file:

a. Find the file system’s UUID of the active LUKS block device:

$ blkid -p /dev/mapper/lv00_encrypted

/dev/mapper/lv00-encrypted: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. Open /etc/fstab in a text editor of your choice and add a device in this file, for example:

$ vi /etc/fstab

UUID=37bc2492-d8fa-4969-9d9b-bb64d3685aa9 /home auto rw,user,auto 0

Replace 37bc2492-d8fa-4969-9d9b-bb64d3685aa9 with your file system’s UUID.

7. Resume the online encryption:

cryptsetup reencrypt --resume-only /dev/mapper/vg00-lv00

Enter passphrase for /dev/mapper/vg00-lv00:
Auto-detected active dm device 'lv00_encrypted' for data device /dev/mapper/vg00-lv00.
Finished, time 00:31.130, 10272 MiB written, speed 330.0 MiB/s

Verification

1. Verify if the existing data was encrypted:

cryptsetup luksDump /dev/mapper/vg00-lv00

LUKS header information
Version: 2
Epoch: 4

Red Hat Enterprise Linux 8 Security hardening

88

Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
[...]

2. View the status of the encrypted blank block device:

cryptsetup status lv00_encrypted

/dev/mapper/lv00_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/mapper/vg00-lv00

Additional resources

cryptsetup(8), cryptsetup-reencrypt(8), lvextend(8), resize2fs(8), and parted(8) man pages
on your system

9.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
WITH A DETACHED HEADER

You can encrypt existing data on a block device without creating free space for storing a LUKS header.
The header is stored in a detached location, which also serves as an additional layer of security. The
procedure uses the LUKS2 encryption format.

Prerequisites

The block device has a file system.

You have backed up your data.

WARNING

You might lose your data during the encryption process due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

89

Procedure

1. Unmount all file systems on the device, for example:

umount /dev/nvme0n1p1

2. Initialize the encryption:

cryptsetup reencrypt --encrypt --init-only --header /home/header /dev/nvme0n1p1
nvme_encrypted

WARNING!
========
Header file does not exist, do you want to create it?

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /home/header:
Verify passphrase:
/dev/mapper/nvme_encrypted is now active and ready for online encryption.

Replace /home/header with a path to the file with a detached LUKS header. The detached
LUKS header has to be accessible to unlock the encrypted device later.

3. Mount the device:

mount /dev/mapper/nvme_encrypted /mnt/nvme_encrypted

4. Resume the online encryption:

cryptsetup reencrypt --resume-only --header /home/header /dev/nvme0n1p1

Enter passphrase for /dev/nvme0n1p1:
Auto-detected active dm device 'nvme_encrypted' for data device /dev/nvme0n1p1.
Finished, time 00m51s, 10 GiB written, speed 198.2 MiB/s

Verification

1. Verify if the existing data on a block device using LUKS2 with a detached header is encrypted:

cryptsetup luksDump /home/header

LUKS header information
Version: 2
Epoch: 88
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: c4f5d274-f4c0-41e3-ac36-22a917ab0386
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 0 [bytes]

Red Hat Enterprise Linux 8 Security hardening

90

 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. View the status of the encrypted blank block device:

cryptsetup status nvme_encrypted

/dev/mapper/nvme_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1

Additional resources

cryptsetup(8) and cryptsetup-reencrypt(8) man pages on your system

9.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2

You can encrypt a blank block device, which you can use for an encrypted storage by using the LUKS2
format.

Prerequisites

A blank block device. You can use commands such as lsblk to find if there is no real data on that
device, for example, a file system.

Procedure

1. Setup a partition as an encrypted LUKS partition:

cryptsetup luksFormat /dev/nvme0n1p1

WARNING!
========
This will overwrite data on /dev/nvme0n1p1 irrevocably.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/nvme0n1p1:
Verify passphrase:

2. Open an encrypted LUKS partition:

cryptsetup open /dev/nvme0n1p1 nvme0n1p1_encrypted

Enter passphrase for /dev/nvme0n1p1:

This unlocks the partition and maps it to a new device by using the device mapper. To not
overwrite the encrypted data, this command alerts the kernel that the device is an encrypted
device and addressed through LUKS by using the /dev/mapper/device_mapped_name path.

3. Create a file system to write encrypted data to the partition, which must be accessed through

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

91

3. Create a file system to write encrypted data to the partition, which must be accessed through
the device mapped name:

mkfs -t ext4 /dev/mapper/nvme0n1p1_encrypted

4. Mount the device:

mount /dev/mapper/nvme0n1p1_encrypted mount-point

Verification

1. Verify if the blank block device is encrypted:

cryptsetup luksDump /dev/nvme0n1p1

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 34ce4870-ffdf-467c-9a9e-345a53ed8a25
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. View the status of the encrypted blank block device:

cryptsetup status nvme0n1p1_encrypted

/dev/mapper/nvme0n1p1_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1
 sector size: 512
 offset: 32768 sectors
 size: 20938752 sectors
 mode: read/write

Additional resources

cryptsetup(8), cryptsetup-open (8), and cryptsetup-lusFormat(8) man pages on your system

9.7. CONFIGURING THE LUKS PASSPHRASE IN THE WEB CONSOLE

Red Hat Enterprise Linux 8 Security hardening

92

If you want to add encryption to an existing logical volume on your system, you can only do so through
formatting the volume.

Prerequisites

You have installed the RHEL 8 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

Available existing logical volume without encryption.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. In the panel, click Storage.

3. In the Storage table, click the menu button ⋮ for the storage device you want to encrypt and
click Format.

4. In the Encryption field, select the encryption specification, LUKS1 or LUKS2.

5. Set and confirm your new passphrase.

6. Optional: Modify further encryption options.

7. Finalize formatting settings.

8. Click Format.

9.8. CHANGING THE LUKS PASSPHRASE IN THE WEB CONSOLE

Change a LUKS passphrase on an encrypted disk or partition in the web console.

Prerequisites

You have installed the RHEL 8 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged package is installed on your system.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

93

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

2. In the panel, click Storage.

3. In the Storage table, select the disk with encrypted data.

4. On the disk page, scroll to the Keys section and click the edit button.

5. In the Change passphrase dialog window:

a. Enter your current passphrase.

b. Enter your new passphrase.

c. Confirm your new passphrase.

6. Click Save.

9.9. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Store your sensitive variables in an encrypted file:

a. Create the vault:

$ ansible-vault create vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. After the ansible-vault create command opens an editor, enter the sensitive data in the
<key>: <value> format:

c. Save the changes, and close the editor. Ansible encrypts the data in the vault.

2. Create a playbook file, for example ~/playbook.yml, with the following content:

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - vault.yml
 tasks:

Red Hat Enterprise Linux 8 Security hardening

94

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.storage/README.md file on the control node.

3. Validate the playbook syntax:

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook --ask-vault-pass ~/playbook.yml

Verification

1. Find the luksUUID value of the LUKS encrypted volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup luksUUID
/dev/sdb'

4e4e7970-1822-470e-b55a-e91efe5d0f5c

2. View the encryption status of the volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup status luks-
4e4e7970-1822-470e-b55a-e91efe5d0f5c'

/dev/mapper/luks-4e4e7970-1822-470e-b55a-e91efe5d0f5c is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/sdb
...

3. Verify the created LUKS encrypted volume:

ansible managed-node-01.example.com -m command -a 'cryptsetup luksDump

 - name: Create and configure a volume encrypted with LUKS
 ansible.builtin.include_role:
 name: rhel-system-roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: <label>
 mount_point: /mnt/data
 encryption: true
 encryption_password: "{{ luks_password }}"

CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS

95

/dev/sdb'

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 4e4e7970-1822-470e-b55a-e91efe5d0f5c
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
...

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Encrypting block devices by using LUKS

Ansible vault

Red Hat Enterprise Linux 8 Security hardening

96

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF
ENCRYPTED VOLUMES BY USING POLICY-BASED

DECRYPTION
Policy-Based Decryption (PBD) is a collection of technologies that enable unlocking encrypted root and
secondary volumes of hard drives on physical and virtual machines. PBD uses a variety of unlocking
methods, such as user passwords, a Trusted Platform Module (TPM) device, a PKCS #11 device
connected to a system, for example, a smart card, or a special network server.

PBD allows combining different unlocking methods into a policy, which makes it possible to unlock the
same volume in different ways. The current implementation of the PBD in RHEL consists of the Clevis
framework and plug-ins called pins. Each pin provides a separate unlocking capability. Currently, the
following pins are available:

tang

Allows unlocking volumes using a network server.

tpm2

allows unlocking volumes using a TPM2 policy.

sss

allows deploying high-availability systems using the Shamir’s Secret Sharing (SSS) cryptographic
scheme.

10.1. NETWORK-BOUND DISK ENCRYPTION

The Network Bound Disc Encryption (NBDE) is a subcategory of Policy-Based Decryption (PBD) that
allows binding encrypted volumes to a special network server. The current implementation of the NBDE
includes a Clevis pin for the Tang server and the Tang server itself.

In RHEL, NBDE is implemented through the following components and technologies:

Figure 10.1. NBDE scheme when using a LUKS1-encrypted volume. The luksmeta package is not
used for LUKS2 volumes.

Tang is a server for binding data to network presence. It makes a system containing your data available
when the system is bound to a certain secure network. Tang is stateless and does not require TLS or

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

97

authentication. Unlike escrow-based solutions, where the server stores all encryption keys and has
knowledge of every key ever used, Tang never interacts with any client keys, so it never gains any
identifying information from the client.

Clevis is a pluggable framework for automated decryption. In NBDE, Clevis provides automated
unlocking of LUKS volumes. The clevis package provides the client side of the feature.

A Clevis pin is a plug-in into the Clevis framework. One of such pins is a plug-in that implements
interactions with the NBDE server — Tang.

Clevis and Tang are generic client and server components that provide network-bound encryption. In
RHEL, they are used in conjunction with LUKS to encrypt and decrypt root and non-root storage
volumes to accomplish Network-Bound Disk Encryption.

Both client- and server-side components use the José library to perform encryption and decryption
operations.

When you begin provisioning NBDE, the Clevis pin for Tang server gets a list of the Tang server’s
advertised asymmetric keys. Alternatively, since the keys are asymmetric, a list of Tang’s public keys can
be distributed out of band so that clients can operate without access to the Tang server. This mode is
called offline provisioning.

The Clevis pin for Tang uses one of the public keys to generate a unique, cryptographically-strong
encryption key. Once the data is encrypted using this key, the key is discarded. The Clevis client should
store the state produced by this provisioning operation in a convenient location. This process of
encrypting data is the provisioning step.

The LUKS version 2 (LUKS2) is the default disk-encryption format in RHEL, hence, the provisioning
state for NBDE is stored as a token in a LUKS2 header. The leveraging of provisioning state for NBDE by
the luksmeta package is used only for volumes encrypted with LUKS1.

The Clevis pin for Tang supports both LUKS1 and LUKS2 without specification need. Clevis can encrypt
plain-text files but you have to use the cryptsetup tool for encrypting block devices. See the Encrypting
block devices using LUKS for more information.

When the client is ready to access its data, it loads the metadata produced in the provisioning step and it
responds to recover the encryption key. This process is the recovery step.

In NBDE, Clevis binds a LUKS volume using a pin so that it can be automatically unlocked. After
successful completion of the binding process, the disk can be unlocked using the provided Dracut
unlocker.

NOTE

If the kdump kernel crash dumping mechanism is set to save the content of the system
memory to a LUKS-encrypted device, you are prompted for entering a password during
the second kernel boot.

Additional resources

NBDE (Network-Bound Disk Encryption) Technology Knowledgebase article

tang(8), clevis(1), jose(1), and clevis-luks-unlockers(7) man pages on your system

How to set up Network-Bound Disk Encryption with multiple LUKS devices (Clevis + Tang
unlocking) Knowledgebase article

Red Hat Enterprise Linux 8 Security hardening

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/articles/6987053
https://access.redhat.com/articles/4500491

10.2. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING
MODE

You can use a Tang server to automatically unlock LUKS-encrypted volumes on Clevis-enabled clients.
In the minimalistic scenario, you deploy a Tang server on port 80 by installing the tang package and
entering the systemctl enable tangd.socket --now command. The following example procedure
demonstrates the deployment of a Tang server running on a custom port as a confined service in
SELinux enforcing mode.

Prerequisites

The policycoreutils-python-utils package and its dependencies are installed.

The firewalld service is running.

Procedure

1. To install the tang package and its dependencies, enter the following command as root:

yum install tang

2. Pick an unoccupied port, for example, 7500/tcp, and allow the tangd service to bind to that
port:

semanage port -a -t tangd_port_t -p tcp 7500

Note that a port can be used only by one service at a time, and thus an attempt to use an
already occupied port implies the ValueError: Port already defined error message.

3. Open the port in the firewall:

firewall-cmd --add-port=7500/tcp
firewall-cmd --runtime-to-permanent

4. Enable the tangd service:

systemctl enable tangd.socket

5. Create an override file:

systemctl edit tangd.socket

6. In the following editor screen, which opens an empty override.conf file located in the
/etc/systemd/system/tangd.socket.d/ directory, change the default port for the Tang server
from 80 to the previously picked number by adding the following lines:

[Socket]
ListenStream=
ListenStream=7500

IMPORTANT

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

99

IMPORTANT

Insert the previous code snippet between the lines starting with # Anything
between here and # Lines below this, otherwise the system discards your
changes.

7. Save the changes by pressing Ctrl+O and Enter. Exit the editor by pressing Ctrl+X.

8. Reload the changed configuration:

systemctl daemon-reload

9. Check that your configuration is working:

systemctl show tangd.socket -p Listen
Listen=[::]:7500 (Stream)

10. Start the tangd service:

systemctl restart tangd.socket

Because tangd uses the systemd socket activation mechanism, the server starts as soon as the
first connection comes in. A new set of cryptographic keys is automatically generated at the first
start. To perform cryptographic operations such as manual key generation, use the jose utility.

Verification

On your NBDE client, verify that your Tang server works correctly by using the following
command. The command must return the identical message you pass for encryption and
decryption:

echo test | clevis encrypt tang '{"url":"<tang.server.example.com:7500>"}' -y | clevis decrypt
test

Additional resources

tang(8), semanage(8), firewall-cmd(1), jose(1), systemd.unit(5), and systemd.socket(5) man
pages on your system

10.3. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON
CLIENTS

For security reasons, rotate your Tang server keys and update existing bindings on clients periodically.
The precise interval at which you should rotate them depends on your application, key sizes, and
institutional policy.

Alternatively, you can rotate Tang keys by using the nbde_server RHEL system role. See Using the
nbde_server system role for setting up multiple Tang servers for more information.

Prerequisites

A Tang server is running.

Red Hat Enterprise Linux 8 Security hardening

100

The clevis and clevis-luks packages are installed on your clients.

Note that clevis luks list, clevis luks report, and clevis luks regen have been introduced in
RHEL 8.2.

Procedure

1. Rename all keys in the /var/db/tang key database directory to have a leading . to hide them
from advertisement. Note that the file names in the following example differs from unique file
names in the key database directory of your Tang server:

cd /var/db/tang
ls -l
-rw-r--r--. 1 root root 349 Feb 7 14:55 UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
-rw-r--r--. 1 root root 354 Feb 7 14:55 y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk
mv UV6dqXSwe1bRKG3KbJmdiR020hY.jwk .UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
mv y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk .y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk

2. Check that you renamed and therefore hid all keys from the Tang server advertisement:

ls -l
total 0

3. Generate new keys using the /usr/libexec/tangd-keygen command in /var/db/tang on the Tang
server:

/usr/libexec/tangd-keygen /var/db/tang
ls /var/db/tang
3ZWS6-cDrCG61UPJS2BMmPU4I54.jwk zyLuX6hijUy_PSeUEFDi7hi38.jwk

4. Check that your Tang server advertises the signing key from the new key pair, for example:

tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54

5. On your NBDE clients, use the clevis luks report command to check if the keys advertised by
the Tang server remains the same. You can identify slots with the relevant binding using the
clevis luks list command, for example:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv"}'
clevis luks report -d /dev/sda2 -s 1
...
Report detected that some keys were rotated.
Do you want to regenerate luks metadata with "clevis luks regen -d /dev/sda2 -s 1"? [ynYN]

6. To regenerate LUKS metadata for the new keys either press y to the prompt of the previous
command, or use the clevis luks regen command:

clevis luks regen -d /dev/sda2 -s 1

7. When you are sure that all old clients use the new keys, you can remove the old keys from the
Tang server, for example:

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

101

cd /var/db/tang
rm .*.jwk

WARNING

Removing the old keys while clients are still using them can result in data loss. If you
accidentally remove such keys, use the clevis luks regen command on the clients,
and provide your LUKS password manually.

Additional resources

tang-show-keys(1), clevis-luks-list(1), clevis-luks-report(1), and clevis-luks-regen(1) man
pages on your system

10.4. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG
KEY IN THE WEB CONSOLE

You can configure automated unlocking of a LUKS-encrypted storage device using a key provided by a
Tang server.

Prerequisites

You have installed the RHEL 8 web console.

You have enabled the cockpit service.

Your user account is allowed to log in to the web console.
For instructions, see Installing and enabling the web console .

The cockpit-storaged and clevis-luks packages are installed on your system.

The cockpit.socket service is running at port 9090.

A Tang server is available. See Deploying a Tang server with SELinux in enforcing mode for
details.

You have root privileges or permissions to enter administrative commands with sudo.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Switch to administrative access, provide your credentials, and click Storage. In the Storage
table, click the disk that contains an encrypted volume you plan to add to unlock automatically.

3. In the following page with details of the selected disk, click + in the Keys section to add a Tang
key:

Red Hat Enterprise Linux 8 Security hardening

102

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

4. Select Tang keyserver as Key source, provide the address of your Tang server, and a password
that unlocks the LUKS-encrypted device. Click Add to confirm:

The following dialog window provides a command to verify that the key hash matches.

5. In a terminal on the Tang server, use the tang-show-keys command to display the key hash for
comparison. In this example, the Tang server is running on the port 7500:

tang-show-keys 7500
x100_1k6GPiDOaMlL3WbpCjHOy9ul1bSfdhI3M08wO0

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

103

6. Click Trust key when the key hashes in the web console and in the output of previously listed
commands are the same:

7. In RHEL 8.8 and later, after you select an encrypted root file system and a Tang server, you can
skip adding the rd.neednet=1 parameter to the kernel command line, installing the clevis-
dracut package, and regenerating an initial RAM disk (initrd). For non-root file systems, the
web console now enables the remote-cryptsetup.target and clevis-luks-akspass.path
systemd units, installs the clevis-systemd package, and adds the _netdev parameter to the
fstab and crypttab configuration files.

Verification

1. Check that the newly added Tang key is now listed in the Keys section with the Keyserver type:

2. Verify that the bindings are available for the early boot, for example:

lsinitrd | grep clevis-luks
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->

Red Hat Enterprise Linux 8 Security hardening

104

/usr/lib/systemd/system/clevis-luks-askpass.path
…

Additional resources

Getting started using the RHEL web console

10.5. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS

The Clevis framework can encrypt plain-text files and decrypt both ciphertexts in the JSON Web
Encryption (JWE) format and LUKS-encrypted block devices. Clevis clients can use either Tang network
servers or Trusted Platform Module 2.0 (TPM 2.0) chips for cryptographic operations.

The following commands demonstrate the basic functionality provided by Clevis on examples containing
plain-text files. You can also use them for troubleshooting your NBDE or Clevis+TPM deployments.

Encryption client bound to a Tang server

To check that a Clevis encryption client binds to a Tang server, use the clevis encrypt tang
sub-command:

$ clevis encrypt tang '{"url":"http://tang.srv:port"}' < input-plain.txt > secret.jwe
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y

Change the http://tang.srv:port URL in the previous example to match the URL of the server
where tang is installed. The secret.jwe output file contains your encrypted cipher text in the
JWE format. This cipher text is read from the input-plain.txt input file.

Alternatively, if your configuration requires a non-interactive communication with a Tang server
without SSH access, you can download an advertisement and save it to a file:

$ curl -sfg http://tang.srv:port/adv -o adv.jws

Use the advertisement in the adv.jws file for any following tasks, such as encryption of files or
messages:

$ echo 'hello' | clevis encrypt tang '{"url":"http://tang.srv:port","adv":"adv.jws"}'

To decrypt data, use the clevis decrypt command and provide the cipher text (JWE):

$ clevis decrypt < secret.jwe > output-plain.txt

Encryption client using TPM 2.0

To encrypt using a TPM 2.0 chip, use the clevis encrypt tpm2 sub-command with the only
argument in form of the JSON configuration object:

$ clevis encrypt tpm2 '{}' < input-plain.txt > secret.jwe

To choose a different hierarchy, hash, and key algorithms, specify configuration properties, for

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console

To choose a different hierarchy, hash, and key algorithms, specify configuration properties, for
example:

$ clevis encrypt tpm2 '{"hash":"sha256","key":"rsa"}' < input-plain.txt > secret.jwe

To decrypt the data, provide the ciphertext in the JSON Web Encryption (JWE) format:

$ clevis decrypt < secret.jwe > output-plain.txt

The pin also supports sealing data to a Platform Configuration Registers (PCR) state. That way, the
data can only be unsealed if the PCR hashes values match the policy used when sealing.

For example, to seal the data to the PCR with index 0 and 7 for the SHA-256 bank:

$ clevis encrypt tpm2 '{"pcr_bank":"sha256","pcr_ids":"0,7"}' < input-plain.txt > secret.jwe

WARNING

Hashes in PCRs can be rewritten, and you no longer can unlock your encrypted
volume. For this reason, add a strong passphrase that enable you to unlock the
encrypted volume manually even when a value in a PCR changes.

If the system cannot automatically unlock your encrypted volume after an upgrade
of the shim-x64 package, see the Red Hat Knowledgebase solution Clevis TPM2 no
longer decrypts LUKS devices after a restart.

Additional resources

clevis-encrypt-tang(1), clevis-luks-unlockers(7), clevis(1), and clevis-encrypt-tpm2(1) man
pages on your system

clevis, clevis decrypt, and clevis encrypt tang commands without any arguments show the
built-in CLI help, for example:

$ clevis encrypt tang
Usage: clevis encrypt tang CONFIG < PLAINTEXT > JWE
...

10.6. CONFIGURING NBDE CLIENTS FOR AUTOMATED UNLOCKING
OF LUKS-ENCRYPTED VOLUMES

With the Clevis framework, you can configure clients for automated unlocking of LUKS-encrypted
volumes when a selected Tang server is available. This creates an NBDE (Network-Bound Disk
Encryption) deployment.

Prerequisites

A Tang server is running and available.

Red Hat Enterprise Linux 8 Security hardening

106

https://access.redhat.com/solutions/6175492

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

yum install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. Bind the volume to a Tang server using the clevis luks bind command:

clevis luks bind -d /dev/sda2 tang '{"url":"http://tang.srv"}'
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y
You are about to initialize a LUKS device for metadata storage.
Attempting to initialize it may result in data loss if data was
already written into the LUKS header gap in a different format.
A backup is advised before initialization is performed.

Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS password
slot. The clevis luks bind command takes one of the slots.

The volume can now be unlocked with your existing password as well as with the Clevis policy.

4. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system. In RHEL, Clevis produces a generic initrd (initial RAM disk) without host-
specific configuration options and does not automatically add parameters such as rd.neednet=1

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

107

to the kernel command line. If your configuration relies on a Tang pin that requires network
during early boot, use the --hostonly-cmdline argument and dracut adds rd.neednet=1 when it
detects a Tang binding:

a. Install the clevis-dracut package:

yum install clevis-dracut

b. Regenerate the initial RAM disk:

dracut -fv --regenerate-all --hostonly-cmdline

c. Alternatively, create a .conf file in the /etc/dracut.conf.d/ directory, and add the
hostonly_cmdline=yes option to the file. Then, you can use dracut without --hostonly-
cmdline, for example:

echo "hostonly_cmdline=yes" > /etc/dracut.conf.d/clevis.conf
dracut -fv --regenerate-all

d. You can also ensure that networking for a Tang pin is available during early boot by using
the grubby tool on the system where Clevis is installed:

grubby --update-kernel=ALL --args="rd.neednet=1"

Verification

1. Verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis luks
list command:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv:port"}'

2. Check that the bindings are available for the early boot, for example:

lsinitrd | grep clevis-luks
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
/usr/lib/systemd/system/clevis-luks-askpass.path
…

Additional resources

clevis-luks-bind(1) and dracut.cmdline(7) man pages on your system

Looking forward to Linux network configuration in the initial ramdisk (initrd) (Red Hat Enable
Sysadmin)

10.7. CONFIGURING NBDE CLIENTS WITH STATIC IP CONFIGURATION

To use NBDE for clients with static IP configuration (without DHCP), you must pass your network
configuration to the dracut tool manually.

Red Hat Enterprise Linux 8 Security hardening

108

https://www.redhat.com/sysadmin/network-confi-initrd

Prerequisites

A Tang server is running and available.

The NBDE client is configured for automated unlocking of encrypted volumes by the Tang
server.
For details, see Configuring NBDE clients for automated unlocking of LUKS-encrypted volumes .

Procedure

1. You can provide your static network configuration as a value for the kernel-cmdline option in a
dracut command, for example:

dracut -fv --regenerate-all --kernel-cmdline
"ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none nameserver=192.0.2.100"

2. Alternatively, create a .conf file in the /etc/dracut.conf.d/ directory with the static network
information and then, regenerate the initial RAM disk image:

cat /etc/dracut.conf.d/static_ip.conf
kernel_cmdline="ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none
nameserver=192.0.2.100"
dracut -fv --regenerate-all

10.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED
VOLUMES BY USING A TPM 2.0 POLICY

You can configure unlocking of LUKS-encrypted volumes by using a Trusted Platform Module 2.0 (TPM
2.0) policy.

Prerequisites

An accessible TPM 2.0-compatible device.

A system with the 64-bit Intel or 64-bit AMD architecture.

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

yum install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

109

3. Bind the volume to a TPM 2.0 device using the clevis luks bind command, for example:

clevis luks bind -d /dev/sda2 tpm2 '{"hash":"sha256","key":"rsa"}'
...
Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS
password slot. The clevis luks bind command takes one of the slots.

Alternatively, if you want to seal data to specific Platform Configuration Registers (PCR)
states, add the pcr_bank and pcr_ids values to the clevis luks bind command, for
example:

clevis luks bind -d /dev/sda2 tpm2
'{"hash":"sha256","key":"rsa","pcr_bank":"sha256","pcr_ids":"0,1"}'

IMPORTANT

Because the data can only be unsealed if PCR hashes values match the
policy used when sealing and the hashes can be rewritten, add a strong
passphrase that enable you to unlock the encrypted volume manually when a
value in a PCR changes.

If the system cannot automatically unlock your encrypted volume after
upgrading the shim-x64 package, see the Red Hat Knowledgebase solution
Clevis TPM2 no longer decrypts LUKS devices after a restart .

4. The volume can now be unlocked with your existing password as well as with the Clevis policy.

5. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system:

yum install clevis-dracut
dracut -fv --regenerate-all

Verification

1. To verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis
luks list command:

Red Hat Enterprise Linux 8 Security hardening

110

https://access.redhat.com/solutions/6175492

clevis luks list -d /dev/sda2
1: tpm2 '{"hash":"sha256","key":"rsa"}'

Additional resources

clevis-luks-bind(1), clevis-encrypt-tpm2(1), and dracut.cmdline(7) man pages on your
system

10.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME
MANUALLY

Use the following procedure for manual removing the metadata created by the clevis luks bind
command and also for wiping a key slot that contains passphrase added by Clevis.

IMPORTANT

The recommended way to remove a Clevis pin from a LUKS-encrypted volume is through
the clevis luks unbind command. The removal procedure using clevis luks unbind
consists of only one step and works for both LUKS1 and LUKS2 volumes. The following
example command removes the metadata created by the binding step and wipe the key
slot 1 on the /dev/sda2 device:

clevis luks unbind -d /dev/sda2 -s 1

Prerequisites

A LUKS-encrypted volume with a Clevis binding.

Procedure

1. Check which LUKS version the volume, for example /dev/sda2, is encrypted by and identify a
slot and a token that is bound to Clevis:

cryptsetup luksDump /dev/sda2
LUKS header information
Version: 2
...
Keyslots:
 0: luks2
...
1: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
...
 Tokens:
 0: clevis
 Keyslot: 1
...

In the previous example, the Clevis token is identified by 0 and the associated key slot is 1.

2. In case of LUKS2 encryption, remove the token:

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

111

cryptsetup token remove --token-id 0 /dev/sda2

3. If your device is encrypted by LUKS1, which is indicated by the Version: 1 string in the output of
the cryptsetup luksDump command, perform this additional step with the luksmeta wipe
command:

luksmeta wipe -d /dev/sda2 -s 1

4. Wipe the key slot containing the Clevis passphrase:

cryptsetup luksKillSlot /dev/sda2 1

Additional resources

clevis-luks-unbind(1), cryptsetup(8), and luksmeta(8) man pages on your system

10.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-
ENCRYPTED VOLUMES BY USING KICKSTART

Follow the steps in this procedure to configure an automated installation process that uses Clevis for
the enrollment of LUKS-encrypted volumes.

Procedure

1. Instruct Kickstart to partition the disk such that LUKS encryption has enabled for all mount
points, other than /boot, with a temporary password. The password is temporary for this step of
the enrollment process.

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --grow --encrypted --passphrase=temppass

Note that OSPP-compliant systems require a more complex configuration, for example:

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --size=2048 --encrypted --passphrase=temppass
part /var --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /tmp --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /home --fstype="xfs" --ondisk=vda --size=2048 --grow --encrypted --
passphrase=temppass
part /var/log --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /var/log/audit --fstype="xfs" --ondisk=vda --size=1024 --encrypted --
passphrase=temppass

2. Install the related Clevis packages by listing them in the %packages section:

%packages
clevis-dracut
clevis-luks
clevis-systemd
%end

3. Optional: To ensure that you can unlock the encrypted volume manually when required, add a

Red Hat Enterprise Linux 8 Security hardening

112

strong passphrase before you remove the temporary passphrase. For more information, see the
Red Hat Knowledgebase solution How to add a passphrase, key, or keyfile to an existing LUKS
device.

4. Call clevis luks bind to perform binding in the %post section. Afterward, remove the
temporary password:

%post
clevis luks bind -y -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

If your configuration relies on a Tang pin that requires network during early boot or you use
NBDE clients with static IP configurations, you have to modify the dracut command as
described in Configuring manual enrollment of LUKS-encrypted volumes .

Note that the -y option for the clevis luks bind command is available from RHEL 8.3. In RHEL
8.2 and older, replace -y by -f in the clevis luks bind command and download the
advertisement from the Tang server:

%post
curl -sfg http://tang.srv/adv -o adv.jws
clevis luks bind -f -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv","adv":"adv.jws"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

WARNING

The cryptsetup luksRemoveKey command prevents any further
administration of a LUKS2 device on which you apply it. You can recover a
removed master key using the dmsetup command only for LUKS1 devices.

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis(1), clevis-luks-bind(1), cryptsetup(8), and dmsetup(8) man pages on your system

Automatically installing RHEL

10.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-
ENCRYPTED REMOVABLE STORAGE DEVICE

You can set up an automated unlocking process of a LUKS-encrypted USB storage device.

Procedure

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

113

https://access.redhat.com/solutions/230993
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/automatically_installing_rhel/index

Procedure

1. To automatically unlock a LUKS-encrypted removable storage device, such as a USB drive,
install the clevis-udisks2 package:

yum install clevis-udisks2

2. Reboot the system, and then perform the binding step using the clevis luks bind command as
described in Configuring manual enrollment of LUKS-encrypted volumes , for example:

clevis luks bind -d /dev/sdb1 tang '{"url":"http://tang.srv"}'

3. The LUKS-encrypted removable device can be now unlocked automatically in your GNOME
desktop session. The device bound to a Clevis policy can be also unlocked by the clevis luks
unlock command:

clevis luks unlock -d /dev/sdb1

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis-luks-unlockers(7) man page on your system

10.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS

Tang provides two methods for building a high-availability deployment:

Client redundancy (recommended)

Clients should be configured with the ability to bind to multiple Tang servers. In this setup, each Tang
server has its own keys and clients can decrypt by contacting a subset of these servers. Clevis already
supports this workflow through its sss plug-in. Red Hat recommends this method for a high-
availability deployment.

Key sharing

For redundancy purposes, more than one instance of Tang can be deployed. To set up a second or
any subsequent instance, install the tang packages and copy the key directory to the new host using
rsync over SSH. Note that Red Hat does not recommend this method because sharing keys
increases the risk of key compromise and requires additional automation infrastructure.

High-available NBDE using Shamir’s Secret Sharing
Shamir’s Secret Sharing (SSS) is a cryptographic scheme that divides a secret into several unique parts.
To reconstruct the secret, a number of parts is required. The number is called threshold and SSS is also
referred to as a thresholding scheme.

Clevis provides an implementation of SSS. It creates a key and divides it into a number of pieces. Each
piece is encrypted using another pin including even SSS recursively. Additionally, you define the
threshold t. If an NBDE deployment decrypts at least t pieces, then it recovers the encryption key and
the decryption process succeeds. When Clevis detects a smaller number of parts than specified in the
threshold, it prints an error message.

Example 1: Redundancy with two Tang servers
The following command decrypts a LUKS-encrypted device when at least one of two Tang servers is
available:

Red Hat Enterprise Linux 8 Security hardening

114

clevis luks bind -d /dev/sda1 sss '{"t":1,"pins":{"tang":[{"url":"http://tang1.srv"},
{"url":"http://tang2.srv"}]}}'

The previous command used the following configuration scheme:

{
 "t":1,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 },
 {
 "url":"http://tang2.srv"
 }
]
 }
}

In this configuration, the SSS threshold t is set to 1 and the clevis luks bind command successfully
reconstructs the secret if at least one from two listed tang servers is available.

Example 2: Shared secret on a Tang server and a TPM device
The following command successfully decrypts a LUKS-encrypted device when both the tang server and
the tpm2 device are available:

clevis luks bind -d /dev/sda1 sss '{"t":2,"pins":{"tang":[{"url":"http://tang1.srv"}], "tpm2":
{"pcr_ids":"0,7"}}}'

The configuration scheme with the SSS threshold 't' set to '2' is now:

{
 "t":2,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 }
],
 "tpm2":{
 "pcr_ids":"0,7"
 }
 }
}

Additional resources

tang(8) (section High Availability), clevis(1) (section Shamir’s Secret Sharing), and clevis-
encrypt-sss(1) man pages on your system

10.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK

The clevis luks bind command does not change the LUKS master key. This implies that if you create a

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

115

The clevis luks bind command does not change the LUKS master key. This implies that if you create a
LUKS-encrypted image for use in a virtual machine or cloud environment, all the instances that run this
image share a master key. This is extremely insecure and should be avoided at all times.

This is not a limitation of Clevis but a design principle of LUKS. If your scenario requires having encrypted
root volumes in a cloud, perform the installation process (usually using Kickstart) for each instance of
Red Hat Enterprise Linux in the cloud as well. The images cannot be shared without also sharing a LUKS
master key.

To deploy automated unlocking in a virtualized environment, use systems such as lorax or virt-install
together with a Kickstart file (see Configuring automated enrollment of LUKS-encrypted volumes using
Kickstart) or another automated provisioning tool to ensure that each encrypted VM has a unique
master key.

Additional resources

clevis-luks-bind(1) man page on your system

10.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR
CLOUD ENVIRONMENTS BY USING NBDE

Deploying automatically-enrollable encrypted images in a cloud environment can provide a unique set
of challenges. Like other virtualization environments, it is recommended to reduce the number of
instances started from a single image to avoid sharing the LUKS master key.

Therefore, the best practice is to create customized images that are not shared in any public repository
and that provide a base for the deployment of a limited amount of instances. The exact number of
instances to create should be defined by deployment’s security policies and based on the risk tolerance
associated with the LUKS master key attack vector.

To build LUKS-enabled automated deployments, systems such as Lorax or virt-install together with a
Kickstart file should be used to ensure master key uniqueness during the image building process.

Cloud environments enable two Tang server deployment options which we consider here. First, the Tang
server can be deployed within the cloud environment itself. Second, the Tang server can be deployed
outside of the cloud on independent infrastructure with a VPN link between the two infrastructures.

Deploying Tang natively in the cloud does allow for easy deployment. However, given that it shares
infrastructure with the data persistence layer of ciphertext of other systems, it may be possible for both
the Tang server’s private key and the Clevis metadata to be stored on the same physical disk. Access to
this physical disk permits a full compromise of the ciphertext data.

IMPORTANT

Always maintain a physical separation between the location where the data is stored and
the system where Tang is running. This separation between the cloud and the Tang
server ensures that the Tang server’s private key cannot be accidentally combined with
the Clevis metadata. It also provides local control of the Tang server if the cloud
infrastructure is at risk.

10.15. DEPLOYING TANG AS A CONTAINER

The tang container image provides Tang-server decryption capabilities for Clevis clients that run either
in OpenShift Container Platform (OCP) clusters or in separate virtual machines.

Red Hat Enterprise Linux 8 Security hardening

116

Prerequisites

The podman package and its dependencies are installed on the system.

You have logged in on the registry.redhat.io container catalog using the podman login
registry.redhat.io command. See Red Hat Container Registry Authentication for more
information.

The Clevis client is installed on systems containing LUKS-encrypted volumes that you want to
automatically unlock by using a Tang server.

Procedure

1. Pull the tang container image from the registry.redhat.io registry:

podman pull registry.redhat.io/rhel8/tang

2. Run the container, specify its port, and specify the path to the Tang keys. The previous example
runs the tang container, specifies the port 7500, and indicates a path to the Tang keys of the
/var/db/tang directory:

podman run -d -p 7500:7500 -v tang-keys:/var/db/tang --name tang
registry.redhat.io/rhel8/tang

Note that Tang uses port 80 by default but this may collide with other services such as the
Apache HTTP server.

3. Optional: For increased security, rotate the Tang keys periodically. You can use the tangd-
rotate-keys script, for example:

podman run --rm -v tang-keys:/var/db/tang registry.redhat.io/rhel8/tang tangd-rotate-keys -
v -d /var/db/tang
Rotated key 'rZAMKAseaXBe0rcKXL1hCCIq-DY.jwk' -> .'rZAMKAseaXBe0rcKXL1hCCIq-
DY.jwk'
Rotated key 'x1AIpc6WmnCU-CabD8_4q18vDuw.jwk' -> .'x1AIpc6WmnCU-
CabD8_4q18vDuw.jwk'
Created new key GrMMX_WfdqomIU_4RyjpcdlXb0E.jwk
Created new key _dTTfn17sZZqVAp80u3ygFDHtjk.jwk
Keys rotated successfully.

Verification

On a system that contains LUKS-encrypted volumes for automated unlocking by the presence
of the Tang server, check that the Clevis client can encrypt and decrypt a plain-text message
using Tang:

echo test | clevis encrypt tang '{"url":"http://localhost:7500"}' | clevis decrypt
The advertisement contains the following signing keys:

x1AIpc6WmnCU-CabD8_4q18vDuw

Do you wish to trust these keys? [ynYN] y
test

The previous example command shows the test string at the end of its output when a Tang

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

117

https://access.redhat.com/RegistryAuthentication

The previous example command shows the test string at the end of its output when a Tang
server is available on the localhost URL and communicates through port 7500.

Additional resources

podman(1), clevis(1), and tang(8) man pages on your system

10.16. CONFIGURING NBDE BY USING RHEL SYSTEM ROLES

You can use the nbde_client and nbde_server RHEL system roles for automated deployments of
Policy-Based Decryption (PBD) solutions using Clevis and Tang. The rhel-system-roles package
contains these system roles, the related examples, and also the reference documentation.

10.16.1. Using the nbde_server RHEL system role for setting up multiple Tang servers

By using the nbde_server system role, you can deploy and manage a Tang server as part of an
automated disk encryption solution. This role supports the following features:

Rotating Tang keys

Deploying and backing up Tang keys

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This example playbook ensures deploying of your Tang server and a key rotation.

The settings specified in the example playbook include the following:

nbde_server_manage_firewall: true

Use the firewall system role to manage ports used by the nbde_server role.

nbde_server_manage_selinux: true

Use the selinux system role to manage ports used by the nbde_server role.
For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-

- name: Deploy a Tang server
 hosts: tang.server.example.com
 tasks:
 - name: Install and configure periodic key rotation
 ansible.builtin.include_role:
 name: rhel-system-roles.nbde_server
 vars:
 nbde_server_rotate_keys: yes
 nbde_server_manage_firewall: true
 nbde_server_manage_selinux: true

Red Hat Enterprise Linux 8 Security hardening

118

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.nbde_server/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

On your NBDE client, verify that your Tang server works correctly by using the following
command. The command must return the identical message you pass for encryption and
decryption:

ansible managed-node-01.example.com -m command -a 'echo test | clevis encrypt tang
'{"url":"<tang.server.example.com>"}' -y | clevis decrypt'
test

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_server/README.md file

/usr/share/doc/rhel-system-roles/nbde_server/ directory

10.16.2. Setting up Clevis clients with DHCP by using the nbde_client RHEL system
role

The nbde_client system role enables you to deploy multiple Clevis clients in an automated way.

This role supports binding a LUKS-encrypted volume to one or more Network-Bound (NBDE) servers -
Tang servers. You can either preserve the existing volume encryption with a passphrase or remove it.
After removing the passphrase, you can unlock the volume only using NBDE. This is useful when a volume
is initially encrypted using a temporary key or password that you should remove after you provision the
system.

If you provide both a passphrase and a key file, the role uses what you have provided first. If it does not
find any of these valid, it attempts to retrieve a passphrase from an existing binding.

Policy-Based Decryption (PBD) defines a binding as a mapping of a device to a slot. This means that
you can have multiple bindings for the same device. The default slot is slot 1.

NOTE

The nbde_client system role supports only Tang bindings. Therefore, you cannot use it
for TPM2 bindings.

Prerequisites

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

119

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

A volume that is already encrypted by using LUKS.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This example playbook configures Clevis clients for automated unlocking of two LUKS-
encrypted volumes when at least one of two Tang servers is available.

The settings specified in the example playbook include the following:

state: present

The values of state indicate the configuration after you run the playbook. Use the present
value for either creating a new binding or updating an existing one. Contrary to a clevis luks
bind command, you can use state: present also for overwriting an existing binding in its
device slot. The absent value removes a specified binding.

nbde_client_early_boot: true

The nbde_client role ensures that networking for a Tang pin is available during early boot by
default. If you scenario requires to disable this feature, add the nbde_client_early_boot:
false variable to your playbook.
For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.nbde_client/README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

- name: Configure clients for unlocking of encrypted volumes by Tang servers
 hosts: managed-node-01.example.com
 tasks:
 - name: Create NBDE client bindings
 ansible.builtin.include_role:
 name: rhel-system-roles.nbde_client
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 nbde_client_early_boot: true
 state: present
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

Red Hat Enterprise Linux 8 Security hardening

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. On your NBDE client, check that the encrypted volume that should be automatically unlocked
by your Tang servers contain the corresponding information in its LUKS pins:

ansible managed-node-01.example.com -m command -a 'clevis luks list -d /dev/rhel/root'
1: tang '{"url":"<http://server1.example.com/>"}'
2: tang '{"url":"<http://server2.example.com/>"}'

2. If you do not use the nbde_client_early_boot: false variable, verify that the bindings are
available for the early boot, for example:

ansible managed-node-01.example.com -m command -a 'lsinitrd | grep clevis-luks'
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
/usr/lib/systemd/system/clevis-luks-askpass.path
…

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md file

/usr/share/doc/rhel-system-roles/nbde_client/ directory

10.16.3. Setting up static-IP Clevis clients by using the nbde_client RHEL system role

The nbde_client RHEL system role supports only scenarios with Dynamic Host Configuration Protocol
(DHCP). On an NBDE client with static IP configuration, you must pass your network configuration as a
kernel boot parameter.

Typically, administrators want to reuse a playbook and not maintain individual playbooks for each host to
which Ansible assigns static IP addresses during early boot. In this case, you can use variables in the
playbook and provide the settings in an external file. As a result, you need only one playbook and one file
with the settings.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

A volume that is already encrypted by using LUKS.

Procedure

1. Create a file with the network settings of your hosts, for example, static-ip-settings-

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

1. Create a file with the network settings of your hosts, for example, static-ip-settings-
clients.yml, and add the values you want to dynamically assign to the hosts:

2. Create a playbook file, for example, ~/playbook.yml, with the following content:

This playbook reads certain values dynamically for each host listed in the ~/static-ip-settings-
clients.yml file.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.network/README.md file on the control node.

clients:
 managed-node-01.example.com:
 ip_v4: 192.0.2.1
 gateway_v4: 192.0.2.254
 netmask_v4: 255.255.255.0
 interface: enp1s0
 managed-node-02.example.com:
 ip_v4: 192.0.2.2
 gateway_v4: 192.0.2.254
 netmask_v4: 255.255.255.0
 interface: enp1s0

- name: Configure clients for unlocking of encrypted volumes by Tang servers
 hosts: managed-node-01.example.com,managed-node-02.example.com
 vars_files:
 - ~/static-ip-settings-clients.yml
 tasks:
 - name: Create NBDE client bindings
 ansible.builtin.include_role:
 name: rhel-system-roles.network
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

 - name: Configure a Clevis client with static IP address during early boot
 ansible.builtin.include_role:
 name: rhel-system-roles.bootloader
 vars:
 bootloader_settings:
 - kernel: ALL
 options:
 - name: ip
 value: "{{ clients[inventory_hostname]['ip_v4'] }}::{{ clients[inventory_hostname]
['gateway_v4'] }}:{{ clients[inventory_hostname]['netmask_v4'] }}::{{
clients[inventory_hostname]['interface'] }}:none"

Red Hat Enterprise Linux 8 Security hardening

122

3. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

4. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md file

/usr/share/doc/rhel-system-roles/nbde_client/ directory

Looking forward to Linux network configuration in the initial ramdisk (initrd) (Red Hat Enable
Sysadmin)

CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

123

https://www.redhat.com/sysadmin/network-confi-initrd

CHAPTER 11. AUDITING THE SYSTEM
Although Audit does not provide additional security to your system, you can use it to discover violations
of security policies on your system. Then, you can prevent future such violations by configuring
additional security measures such as SELinux.

11.1. LINUX AUDIT

The Linux Audit system provides a way to track security-relevant information about your system. Based
on pre-configured rules, Audit generates log entries to record as much information about the events
that are happening on your system as possible. This information is crucial for mission-critical
environments to determine the violator of the security policy and the actions they performed.

The following list summarizes some of the information that Audit is capable of recording in its log files:

Date and time, type, and outcome of an event

Sensitivity labels of subjects and objects

Association of an event with the identity of the user who triggered the event

All modifications to Audit configuration and attempts to access Audit log files

All uses of authentication mechanisms, such as SSH, Kerberos, and others

Changes to any trusted database, such as /etc/passwd

Attempts to import or export information into or from the system

Include or exclude events based on user identity, subject and object labels, and other attributes

The use of the Audit system is also a requirement for a number of security-related certifications. Audit is
designed to meet or exceed the requirements of the following certifications or compliance guides:

Controlled Access Protection Profile (CAPP)

Labeled Security Protection Profile (LSPP)

Rule Set Base Access Control (RSBAC)

National Industrial Security Program Operating Manual (NISPOM)

Federal Information Security Management Act (FISMA)

Payment Card Industry — Data Security Standard (PCI-DSS)

Security Technical Implementation Guides (STIG)

Audit has also been evaluated by National Information Assurance Partnership (NIAP) and Best Security
Industries (BSI).

Use Cases

Watching file access

Audit can track whether a file or a directory has been accessed, modified, executed, or the file’s

Red Hat Enterprise Linux 8 Security hardening

124

Audit can track whether a file or a directory has been accessed, modified, executed, or the file’s
attributes have been changed. This is useful, for example, to detect access to important files and
have an Audit trail available in case one of these files is corrupted.

Monitoring system calls

Audit can be configured to generate a log entry every time a particular system call is used. This can
be used, for example, to track changes to the system time by monitoring the settimeofday,
clock_adjtime, and other time-related system calls.

Recording commands run by a user

Audit can track whether a file has been executed, so rules can be defined to record every execution
of a particular command. For example, a rule can be defined for every executable in the /bin
directory. The resulting log entries can then be searched by user ID to generate an audit trail of
executed commands per user.

Recording execution of system pathnames

Aside from watching file access which translates a path to an inode at rule invocation, Audit can now
watch the execution of a path even if it does not exist at rule invocation, or if the file is replaced after
rule invocation. This allows rules to continue to work after upgrading a program executable or before
it is even installed.

Recording security events

The pam_faillock authentication module is capable of recording failed login attempts. Audit can be
set up to record failed login attempts as well and provides additional information about the user who
attempted to log in.

Searching for events

Audit provides the ausearch utility, which can be used to filter the log entries and provide a
complete audit trail based on several conditions.

Running summary reports

The aureport utility can be used to generate, among other things, daily reports of recorded events. A
system administrator can then analyze these reports and investigate suspicious activity further.

Monitoring network access

The nftables, iptables, and ebtables utilities can be configured to trigger Audit events, allowing
system administrators to monitor network access.

NOTE

System performance may be affected depending on the amount of information that is
collected by Audit.

11.2. AUDIT SYSTEM ARCHITECTURE

The Audit system consists of two main parts: the user-space applications and utilities, and the kernel-
side system call processing. The kernel component receives system calls from user-space applications
and filters them through one of the following filters: user, task, fstype, or exit.

After a system call passes the exclude filter, it is sent through one of the aforementioned filters, which,
based on the Audit rule configuration, sends it to the Audit daemon for further processing.

The user-space Audit daemon collects the information from the kernel and creates entries in a log file.
Other Audit user-space utilities interact with the Audit daemon, the kernel Audit component, or the
Audit log files:

The auditctl Audit control utility interacts with the kernel Audit component to manage rules and
to control many settings and parameters of the event generation process.

CHAPTER 11. AUDITING THE SYSTEM

125

The remaining Audit utilities take the contents of the Audit log files as input and generate
output based on user’s requirements. For example, the aureport utility generates a report of all
recorded events.

In RHEL 8, the Audit dispatcher daemon (audisp) functionality is integrated in the Audit daemon
(auditd). Configuration files of plugins for the interaction of real-time analytical programs with Audit
events are located in the /etc/audit/plugins.d/ directory by default.

11.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT

The default auditd configuration should be suitable for most environments. However, if your
environment must meet strict security policies, you can change the following settings for the Audit
daemon configuration in the /etc/audit/auditd.conf file:

log_file

The directory that holds the Audit log files (usually /var/log/audit/) should reside on a separate
mount point. This prevents other processes from consuming space in this directory and provides
accurate detection of the remaining space for the Audit daemon.

max_log_file

Specifies the maximum size of a single Audit log file, must be set to make full use of the available
space on the partition that holds the Audit log files. The max_log_file` parameter specifies the
maximum file size in megabytes. The value given must be numeric.

max_log_file_action

Decides what action is taken once the limit set in max_log_file is reached, should be set to
keep_logs to prevent Audit log files from being overwritten.

space_left

Specifies the amount of free space left on the disk for which an action that is set in the
space_left_action parameter is triggered. Must be set to a number that gives the administrator
enough time to respond and free up disk space. The space_left value depends on the rate at which
the Audit log files are generated. If the value of space_left is specified as a whole number, it is
interpreted as an absolute size in megabytes (MiB). If the value is specified as a number between 1
and 99 followed by a percentage sign (for example, 5%), the Audit daemon calculates the absolute
size in megabytes based on the size of the file system containing log_file.

space_left_action

It is recommended to set the space_left_action parameter to email or exec with an appropriate
notification method.

admin_space_left

Specifies the absolute minimum amount of free space for which an action that is set in the
admin_space_left_action parameter is triggered, must be set to a value that leaves enough space
to log actions performed by the administrator. The numeric value for this parameter should be lower
than the number for space_left. You can also append a percent sign (for example, 1%) to the number
to have the audit daemon calculate the number based on the disk partition size.

admin_space_left_action

Should be set to single to put the system into single-user mode and allow the administrator to free
up some disk space.

disk_full_action

Specifies an action that is triggered when no free space is available on the partition that holds the
Audit log files, must be set to halt or single. This ensures that the system is either shut down or
operating in single-user mode when Audit can no longer log events.

disk_error_action

Red Hat Enterprise Linux 8 Security hardening

126

Specifies an action that is triggered in case an error is detected on the partition that holds the Audit
log files, must be set to syslog, single, or halt, depending on your local security policies regarding
the handling of hardware malfunctions.

flush

Should be set to incremental_async. It works in combination with the freq parameter, which
determines how many records can be sent to the disk before forcing a hard synchronization with the
hard drive. The freq parameter should be set to 100. These parameters assure that Audit event data
is synchronized with the log files on the disk while keeping good performance for bursts of activity.

The remaining configuration options should be set according to your local security policy.

11.4. STARTING AND CONTROLLING AUDITD

After auditd is configured, start the service to collect Audit information and store it in the log files. Use
the following command as the root user to start auditd:

service auditd start

To configure auditd to start at boot time:

systemctl enable auditd

You can temporarily disable auditd with the # auditctl -e 0 command and re-enable it with # auditctl -e
1.

You can perform other actions on auditd by using the service auditd <action> command, where
<action> can be one of the following:

stop

Stops auditd.

restart

Restarts auditd.

reload or force-reload

Reloads the configuration of auditd from the /etc/audit/auditd.conf file.

rotate

Rotates the log files in the /var/log/audit/ directory.

resume

Resumes logging of Audit events after it has been previously suspended, for example, when there is
not enough free space on the disk partition that holds the Audit log files.

condrestart or try-restart

Restarts auditd only if it is already running.

status

Displays the running status of auditd.

NOTE

The service command is the only way to correctly interact with the auditd daemon. You
need to use the service command so that the auid value is properly recorded. You can
use the systemctl command only for two actions: enable and status.

CHAPTER 11. AUDITING THE SYSTEM

127

11.5. UNDERSTANDING AUDIT LOG FILES

By default, the Audit system stores log entries in the /var/log/audit/audit.log file; if log rotation is
enabled, rotated audit.log files are stored in the same directory.

Add the following Audit rule to log every attempt to read or modify the /etc/ssh/sshd_config file:

auditctl -w /etc/ssh/sshd_config -p warx -k sshd_config

If the auditd daemon is running, for example, using the following command creates a new event in the
Audit log file:

$ cat /etc/ssh/sshd_config

This event in the audit.log file looks as follows:

type=SYSCALL msg=audit(1364481363.243:24287): arch=c000003e syscall=2 success=no exit=-13
a0=7fffd19c5592 a1=0 a2=7fffd19c4b50 a3=a items=1 ppid=2686 pid=3538 auid=1000 uid=1000
gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts0 ses=1
comm="cat" exe="/bin/cat" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key="sshd_config"
type=CWD msg=audit(1364481363.243:24287): cwd="/home/shadowman"
type=PATH msg=audit(1364481363.243:24287): item=0 name="/etc/ssh/sshd_config" inode=409248
dev=fd:00 mode=0100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:etc_t:s0
nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0
type=PROCTITLE msg=audit(1364481363.243:24287) :
proctitle=636174002F6574632F7373682F737368645F636F6E666967

The above event consists of four records, which share the same time stamp and serial number. Records
always start with the type= keyword. Each record consists of several name=value pairs separated by a
white space or a comma. A detailed analysis of the above event follows:

First Record

type=SYSCALL

The type field contains the type of the record. In this example, the SYSCALL value specifies that this
record was triggered by a system call to the kernel.

msg=audit(1364481363.243:24287):

The msg field records:

A time stamp and a unique ID of the record in the form audit(time_stamp:ID). Multiple
records can share the same time stamp and ID if they were generated as part of the same
Audit event. The time stamp is using the Unix time format - seconds since 00:00:00 UTC on
1 January 1970.

Various event-specific name=value pairs provided by the kernel or user-space applications.

arch=c000003e

The arch field contains information about the CPU architecture of the system. The value, c000003e,
is encoded in hexadecimal notation. When searching Audit records with the ausearch command, use
the -i or --interpret option to automatically convert hexadecimal values into their human-readable
equivalents. The c000003e value is interpreted as x86_64.

Red Hat Enterprise Linux 8 Security hardening

128

syscall=2

The syscall field records the type of the system call that was sent to the kernel. The value, 2, can be
matched with its human-readable equivalent in the /usr/include/asm/unistd_64.h file. In this case, 2
is the open system call. Note that the ausyscall utility allows you to convert system call numbers to
their human-readable equivalents. Use the ausyscall --dump command to display a listing of all
system calls along with their numbers. For more information, see the ausyscall(8) man page.

success=no

The success field records whether the system call recorded in that particular event succeeded or
failed. In this case, the call did not succeed.

exit=-13

The exit field contains a value that specifies the exit code returned by the system call. This value
varies for a different system call. You can interpret the value to its human-readable equivalent with
the following command:

ausearch --interpret --exit -13

Note that the previous example assumes that your Audit log contains an event that failed with exit
code -13.

a0=7fffd19c5592, a1=0, a2=7fffd19c5592, a3=a

The a0 to a3 fields record the first four arguments, encoded in hexadecimal notation, of the system
call in this event. These arguments depend on the system call that is used; they can be interpreted by
the ausearch utility.

items=1

The items field contains the number of PATH auxiliary records that follow the syscall record.

ppid=2686

The ppid field records the Parent Process ID (PPID). In this case, 2686 was the PPID of the parent
process such as bash.

pid=3538

The pid field records the Process ID (PID). In this case, 3538 was the PID of the cat process.

auid=1000

The auid field records the Audit user ID, that is the loginuid. This ID is assigned to a user upon login
and is inherited by every process even when the user’s identity changes, for example, by switching
user accounts with the su - john command.

uid=1000

The uid field records the user ID of the user who started the analyzed process. The user ID can be
interpreted into user names with the following command: ausearch -i --uid UID.

gid=1000

The gid field records the group ID of the user who started the analyzed process.

euid=1000

The euid field records the effective user ID of the user who started the analyzed process.

suid=1000

The suid field records the set user ID of the user who started the analyzed process.

fsuid=1000

The fsuid field records the file system user ID of the user who started the analyzed process.

egid=1000

CHAPTER 11. AUDITING THE SYSTEM

129

The egid field records the effective group ID of the user who started the analyzed process.

sgid=1000

The sgid field records the set group ID of the user who started the analyzed process.

fsgid=1000

The fsgid field records the file system group ID of the user who started the analyzed process.

tty=pts0

The tty field records the terminal from which the analyzed process was invoked.

ses=1

The ses field records the session ID of the session from which the analyzed process was invoked.

comm="cat"

The comm field records the command-line name of the command that was used to invoke the
analyzed process. In this case, the cat command was used to trigger this Audit event.

exe="/bin/cat"

The exe field records the path to the executable that was used to invoke the analyzed process.

subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The subj field records the SELinux context with which the analyzed process was labeled at the time
of execution.

key="sshd_config"

The key field records the administrator-defined string associated with the rule that generated this
event in the Audit log.

Second Record

type=CWD

In the second record, the type field value is CWD — current working directory. This type is used to
record the working directory from which the process that invoked the system call specified in the
first record was executed.
The purpose of this record is to record the current process’s location in case a relative path winds up
being captured in the associated PATH record. This way the absolute path can be reconstructed.

msg=audit(1364481363.243:24287)

The msg field holds the same time stamp and ID value as the value in the first record. The time
stamp is using the Unix time format - seconds since 00:00:00 UTC on 1 January 1970.

cwd="/home/user_name"

The cwd field contains the path to the directory in which the system call was invoked.

Third Record

type=PATH

In the third record, the type field value is PATH. An Audit event contains a PATH-type record for
every path that is passed to the system call as an argument. In this Audit event, only one path
(/etc/ssh/sshd_config) was used as an argument.

msg=audit(1364481363.243:24287):

The msg field holds the same time stamp and ID value as the value in the first and second record.

item=0

The item field indicates which item, of the total number of items referenced in the SYSCALL type

Red Hat Enterprise Linux 8 Security hardening

130

The item field indicates which item, of the total number of items referenced in the SYSCALL type
record, the current record is. This number is zero-based; a value of 0 means it is the first item.

name="/etc/ssh/sshd_config"

The name field records the path of the file or directory that was passed to the system call as an
argument. In this case, it was the /etc/ssh/sshd_config file.

inode=409248

The inode field contains the inode number associated with the file or directory recorded in this
event. The following command displays the file or directory that is associated with the 409248 inode
number:

find / -inum 409248 -print
/etc/ssh/sshd_config

dev=fd:00

The dev field specifies the minor and major ID of the device that contains the file or directory
recorded in this event. In this case, the value represents the /dev/fd/0 device.

mode=0100600

The mode field records the file or directory permissions, encoded in numerical notation as returned
by the stat command in the st_mode field. See the stat(2) man page for more information. In this
case, 0100600 can be interpreted as -rw-------, meaning that only the root user has read and write
permissions to the /etc/ssh/sshd_config file.

ouid=0

The ouid field records the object owner’s user ID.

ogid=0

The ogid field records the object owner’s group ID.

rdev=00:00

The rdev field contains a recorded device identifier for special files only. In this case, it is not used as
the recorded file is a regular file.

obj=system_u:object_r:etc_t:s0

The obj field records the SELinux context with which the recorded file or directory was labeled at the
time of execution.

nametype=NORMAL

The nametype field records the intent of each path record’s operation in the context of a given
syscall.

cap_fp=none

The cap_fp field records data related to the setting of a permitted file system-based capability of
the file or directory object.

cap_fi=none

The cap_fi field records data related to the setting of an inherited file system-based capability of
the file or directory object.

cap_fe=0

The cap_fe field records the setting of the effective bit of the file system-based capability of the
file or directory object.

cap_fver=0

The cap_fver field records the version of the file system-based capability of the file or directory
object.

CHAPTER 11. AUDITING THE SYSTEM

131

Fourth Record

type=PROCTITLE

The type field contains the type of the record. In this example, the PROCTITLE value specifies that
this record gives the full command-line that triggered this Audit event, triggered by a system call to
the kernel.

proctitle=636174002F6574632F7373682F737368645F636F6E666967

The proctitle field records the full command-line of the command that was used to invoke the
analyzed process. The field is encoded in hexadecimal notation to not allow the user to influence the
Audit log parser. The text decodes to the command that triggered this Audit event. When searching
Audit records with the ausearch command, use the -i or --interpret option to automatically convert
hexadecimal values into their human-readable equivalents. The
636174002F6574632F7373682F737368645F636F6E666967 value is interpreted as cat
/etc/ssh/sshd_config.

11.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES

The Audit system operates on a set of rules that define what is captured in the log files. Audit rules can
be set either on the command line using the auditctl utility or in the /etc/audit/rules.d/ directory.

The auditctl command enables you to control the basic functionality of the Audit system and to define
rules that decide which Audit events are logged.

File-system rules examples

1. To define a rule that logs all write access to, and every attribute change of, the /etc/passwd file:

auditctl -w /etc/passwd -p wa -k passwd_changes

2. To define a rule that logs all write access to, and every attribute change of, all the files in the
/etc/selinux/ directory:

auditctl -w /etc/selinux/ -p wa -k selinux_changes

System-call rules examples

1. To define a rule that creates a log entry every time the adjtimex or settimeofday system calls
are used by a program, and the system uses the 64-bit architecture:

auditctl -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time_change

2. To define a rule that creates a log entry every time a file is deleted or renamed by a system user
whose ID is 1000 or larger:

auditctl -a always,exit -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F
auid!=4294967295 -k delete

Note that the -F auid!=4294967295 option is used to exclude users whose login UID is not set.

Executable-file rules

To define a rule that logs all execution of the /bin/id program, execute the following command:

Red Hat Enterprise Linux 8 Security hardening

132

auditctl -a always,exit -F exe=/bin/id -F arch=b64 -S execve -k execution_bin_id

Additional resources

auditctl(8) man page on your system

11.7. DEFINING PERSISTENT AUDIT RULES

To define Audit rules that are persistent across reboots, you must either directly include them in the
/etc/audit/rules.d/audit.rules file or use the augenrules program that reads rules located in the
/etc/audit/rules.d/ directory.

Note that the /etc/audit/audit.rules file is generated whenever the auditd service starts. Files in
/etc/audit/rules.d/ use the same auditctl command-line syntax to specify the rules. Empty lines and text
following a hash sign (#) are ignored.

Furthermore, you can use the auditctl command to read rules from a specified file using the -R option,
for example:

auditctl -R /usr/share/audit/sample-rules/30-stig.rules

11.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH
STANDARDS

To configure Audit for compliance with a specific certification standard, such as OSPP, PCI DSS, or
STIG, you can use the set of pre-configured rules files installed with the audit package as a starting
point. The sample rules are located in the /usr/share/audit/sample-rules directory.

WARNING

The Audit sample rules in the sample-rules directory are not exhaustive nor up to
date because security standards are dynamic and subject to change. These rules are
provided only to demonstrate how Audit rules can be structured and written. They
do not ensure immediate compliance with the latest security standards. To bring
your system into compliance with the latest security standards according to specific
security guidelines, use the SCAP-based security compliance tools .

30-nispom.rules

Audit rule configuration that meets the requirements specified in the Information System Security
chapter of the National Industrial Security Program Operating Manual.

30-ospp-v42*.rules

Audit rule configuration that meets the requirements defined in the OSPP (Protection Profile for
General Purpose Operating Systems) profile version 4.2.

30-pci-dss-v31.rules

Audit rule configuration that meets the requirements set by Payment Card Industry Data Security
Standard (PCI DSS) v3.1.

CHAPTER 11. AUDITING THE SYSTEM

133

30-stig.rules

Audit rule configuration that meets the requirements set by Security Technical Implementation
Guides (STIG).

To use these configuration files, copy them to the /etc/audit/rules.d/ directory and use the augenrules
--load command, for example:

cd /usr/share/audit/sample-rules/
cp 10-base-config.rules 30-stig.rules 31-privileged.rules 99-finalize.rules /etc/audit/rules.d/
augenrules --load

You can order Audit rules using a numbering scheme. See the /usr/share/audit/sample-rules/README-
rules file for more information.

Additional resources

audit.rules(7) man page on your system

11.9. USING AUGENRULES TO DEFINE PERSISTENT RULES

The augenrules script reads rules located in the /etc/audit/rules.d/ directory and compiles them into an
audit.rules file. This script processes all files that end with .rules in a specific order based on their
natural sort order. The files in this directory are organized into groups with the following meanings:

10

Kernel and auditctl configuration

20

Rules that could match general rules but you want a different match

30

Main rules

40

Optional rules

50

Server-specific rules

70

System local rules

90

Finalize (immutable)

The rules are not meant to be used all at once. They are pieces of a policy that should be thought out
and individual files copied to /etc/audit/rules.d/. For example, to set a system up in the STIG
configuration, copy rules 10-base-config, 30-stig, 31-privileged, and 99-finalize.

Once you have the rules in the /etc/audit/rules.d/ directory, load them by running the augenrules script
with the --load directive:

augenrules --load
/sbin/augenrules: No change
No rules
enabled 1

Red Hat Enterprise Linux 8 Security hardening

134

failure 1
pid 742
rate_limit 0
...

Additional resources

audit.rules(8) and augenrules(8) man pages on your system

11.10. DISABLING AUGENRULES

Use the following steps to disable the augenrules utility. This switches Audit to use rules defined in the
/etc/audit/audit.rules file.

Procedure

1. Copy the /usr/lib/systemd/system/auditd.service file to the /etc/systemd/system/ directory:

cp -f /usr/lib/systemd/system/auditd.service /etc/systemd/system/

2. Edit the /etc/systemd/system/auditd.service file in a text editor of your choice, for example:

vi /etc/systemd/system/auditd.service

3. Comment out the line containing augenrules, and uncomment the line containing the auditctl -
R command:

#ExecStartPost=-/sbin/augenrules --load
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules

4. Reload the systemd daemon to fetch changes in the auditd.service file:

systemctl daemon-reload

5. Restart the auditd service:

service auditd restart

Additional resources

augenrules(8) and audit.rules(8) man pages on your system

Auditd service restart overrides changes made to /etc/audit/audit.rules (Red Hat
Knowledgebase)

11.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES

In RHEL 8.6 and later versions, you can use the pre-configured rule 44-installers.rules to configure
Audit to monitor the following utilities that install software:

dnf [3]

CHAPTER 11. AUDITING THE SYSTEM

135

https://access.redhat.com/solutions/1505033

yum

pip

npm

cpan

gem

luarocks

By default, rpm already provides audit SOFTWARE_UPDATE events when it installs or updates a
package. You can list them by entering ausearch -m SOFTWARE_UPDATE on the command line.

In RHEL 8.5 and earlier versions, you can manually add rules to monitor utilities that install software into
a .rules file within the /etc/audit/rules.d/ directory.

NOTE

Pre-configured rule files cannot be used on systems with the ppc64le and aarch64
architectures.

Prerequisites

auditd is configured in accordance with the settings provided in Configuring auditd for a secure
environment .

Procedure

1. On RHEL 8.6 and later, copy the pre-configured rule file 44-installers.rules from the
/usr/share/audit/sample-rules/ directory to the /etc/audit/rules.d/ directory:

cp /usr/share/audit/sample-rules/44-installers.rules /etc/audit/rules.d/

On RHEL 8.5 and earlier, create a new file in the /etc/audit/rules.d/ directory named 44-
installers.rules, and insert the following rules:

-a always,exit -F perm=x -F path=/usr/bin/dnf-3 -F key=software-installer
-a always,exit -F perm=x -F path=/usr/bin/yum -F

You can add additional rules for other utilities that install software, for example pip and npm,
using the same syntax.

2. Load the audit rules:

augenrules --load

Verification

1. List the loaded rules:

auditctl -l
-p x-w /usr/bin/dnf-3 -k software-installer

Red Hat Enterprise Linux 8 Security hardening

136

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

-p x-w /usr/bin/yum -k software-installer
-p x-w /usr/bin/pip -k software-installer
-p x-w /usr/bin/npm -k software-installer
-p x-w /usr/bin/cpan -k software-installer
-p x-w /usr/bin/gem -k software-installer
-p x-w /usr/bin/luarocks -k software-installer

2. Perform an installation, for example:

yum reinstall -y vim-enhanced

3. Search the Audit log for recent installation events, for example:

ausearch -ts recent -k software-installer
––––
time->Thu Dec 16 10:33:46 2021
type=PROCTITLE msg=audit(1639668826.074:298):
proctitle=2F7573722F6C6962657865632F706C6174666F726D2D707974686F6E002F75737
22F62696E2F646E66007265696E7374616C6C002D790076696D2D656E68616E636564
type=PATH msg=audit(1639668826.074:298): item=2 name="/lib64/ld-linux-x86-64.so.2"
inode=10092 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:ld_so_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=1 name="/usr/libexec/platform-python"
inode=4618433 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:bin_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=0 name="/usr/bin/dnf" inode=6886099
dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:rpm_exec_t:s0
nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0 cap_fver=0 cap_frootid=0
type=CWD msg=audit(1639668826.074:298): cwd="/root"
type=EXECVE msg=audit(1639668826.074:298): argc=5 a0="/usr/libexec/platform-python"
a1="/usr/bin/dnf" a2="reinstall" a3="-y" a4="vim-enhanced"
type=SYSCALL msg=audit(1639668826.074:298): arch=c000003e syscall=59 success=yes
exit=0 a0=55c437f22b20 a1=55c437f2c9d0 a2=55c437f2aeb0 a3=8 items=3 ppid=5256
pid=5375 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=3
comm="dnf" exe="/usr/libexec/platform-python3.6"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="software-installer"

11.12. MONITORING USER LOGIN TIMES WITH AUDIT

To monitor which users logged in at specific times, you do not need to configure Audit in any special
way. You can use the ausearch or aureport tools, which provide different ways of presenting the same
information.

Prerequisites

auditd is configured in accordance with the settings provided in Configuring auditd for a secure
environment .

Procedure

To display user log in times, use any one of the following commands:

Search the audit log for the USER_LOGIN message type:

CHAPTER 11. AUDITING THE SYSTEM

137

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

ausearch -m USER_LOGIN -ts '12/02/2020' '18:00:00' -sv no
time->Mon Nov 22 07:33:22 2021
type=USER_LOGIN msg=audit(1637584402.416:92): pid=1939 uid=0 auid=4294967295
ses=4294967295 subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 msg='op=login acct="
(unknown)" exe="/usr/sbin/sshd" hostname=? addr=10.37.128.108 terminal=ssh res=failed'

You can specify the date and time with the -ts option. If you do not use this option,
ausearch provides results from today, and if you omit time, ausearch provides results from
midnight.

You can use the -sv yes option to filter out successful login attempts and -sv no for
unsuccessful login attempts.

Pipe the raw output of the ausearch command into the aulast utility, which displays the output
in a format similar to the output of the last command. For example:

ausearch --raw | aulast --stdin
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.22.16.106 Mon Nov 22 07:40 - 07:40 (00:00)
reboot system boot 4.18.0-348.6.el8 Mon Nov 22 07:33

Display the list of login events by using the aureport command with the --login -i options.

aureport --login -i

Login Report
==
date time auid host term exe success event
==
1. 11/16/2021 13:11:30 root 10.40.192.190 ssh /usr/sbin/sshd yes 6920
2. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6925
3. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6930
4. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6935
5. 11/16/2021 13:11:33 root 10.40.192.190 ssh /usr/sbin/sshd yes 6940
6. 11/16/2021 13:11:33 root 10.40.192.190 /dev/pts/0 /usr/sbin/sshd yes 6945

Additional resources

ausearch(8), aulast(8), and aureport(8) man pages on your system

11.13. ADDITIONAL RESOURCES

RHEL Audit System Reference (Red Hat Knowledgebase)

Auditd execution options in a container (Red Hat Knowledgebase)

Linux Audit Documentation Project page (Github.com)

Documentation in the /usr/share/doc/audit/ directory provided by the audit package

auditd(8), auditctl(8), ausearch(8), audit.rules(7), audispd.conf(5), audispd(8),
auditd.conf(5), ausearch-expression(5), aulast(8), aulastlog(8), aureport(8), ausyscall(8),
autrace(8), and auvirt(8) man pages on your system

Red Hat Enterprise Linux 8 Security hardening

138

https://access.redhat.com/articles/4409591
https://access.redhat.com/articles/4494341
https://github.com/linux-audit/audit-documentation/wiki

[3] Because dnf is a symlink in RHEL, the path in the dnf Audit rule must include the target of the symlink. To
receive correct Audit events, modify the 44-installers.rules file by changing the path=/usr/bin/dnf path to
/usr/bin/dnf-3.

CHAPTER 11. AUDITING THE SYSTEM

139

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY
USING FAPOLICYD

Setting and enforcing a policy that either allows or denies application execution based on a rule set
efficiently prevents the execution of unknown and potentially malicious software.

12.1. INTRODUCTION TO FAPOLICYD

The fapolicyd software framework controls the execution of applications based on a user-defined
policy. This is one of the most efficient ways to prevent running untrusted and possibly malicious
applications on the system.

The fapolicyd framework provides the following components:

fapolicyd service

fapolicyd command-line utilities

fapolicyd RPM plugin

fapolicyd rule language

fagenrules script

The administrator can define the allow and deny execution rules for any application with the possibility
of auditing based on a path, hash, MIME type, or trust.

The fapolicyd framework introduces the concept of trust. An application is trusted when it is properly
installed by the system package manager, and therefore it is registered in the system RPM database.
The fapolicyd daemon uses the RPM database as a list of trusted binaries and scripts. The fapolicyd
RPM plugin registers any system update that is handled by either the YUM package manager or the
RPM Package Manager. The plugin notifies the fapolicyd daemon about changes in this database.
Other ways of adding applications require the creation of custom rules and restarting the fapolicyd
service.

The fapolicyd service configuration is located in the /etc/fapolicyd/ directory with the following
structure:

The /etc/fapolicyd/fapolicyd.trust file contains a list of trusted files. You can also use multiple
trust files in the /etc/fapolicyd/trust.d/ directory.

The /etc/fapolicyd/rules.d/ directory for files containing allow and deny execution rules. The
fagenrules script merges these component rules files to the /etc/fapolicyd/compiled.rules file.

The fapolicyd.conf file contains the daemon’s configuration options. This file is useful primarily
for performance-tuning purposes.

Rules in /etc/fapolicyd/rules.d/ are organized in several files, each representing a different policy goal.
The numbers at the beginning of the corresponding file names determine the order in
/etc/fapolicyd/compiled.rules:

10

Language rules.

20

Dracut-related Rules.

Red Hat Enterprise Linux 8 Security hardening

140

21

rules for updaters.

30

Patterns.

40

ELF rules.

41

Shared objects rules.

42

Trusted ELF rules.

70

Trusted language rules.

72

Shell rules.

90

Deny execute rules.

95

Allow open rules.

You can use one of the following ways for fapolicyd integrity checking:

File-size checking

Comparing SHA-256 hashes

Integrity Measurement Architecture (IMA) subsystem

By default, fapolicyd does no integrity checking. Integrity checking based on the file size is fast, but an
attacker can replace the content of the file and preserve its byte size. Computing and checking SHA-
256 checksums is more secure, but it affects the performance of the system. The integrity = ima option
in fapolicyd.conf requires support for files extended attributes (also known as xattr) on all file systems
containing executable files.

Additional resources

fapolicyd(8), fapolicyd.rules(5), fapolicyd.conf(5), fapolicyd.trust(13), fagenrules(8), and
fapolicyd-cli(1) man pages.

The Enhancing security with the kernel integrity subsystem chapter in the Managing,
monitoring, and updating the kernel document.

The documentation installed with the fapolicyd package in the /usr/share/doc/fapolicyd/
directory and the /usr/share/fapolicyd/sample-rules/README-rules file.

12.2. DEPLOYING FAPOLICYD

When deploying the fapolicyd application allowlisting framework, you can either try your configuration in
permissive mode first or directly enable the service in the default configuration.

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/

Procedure

1. Install the fapolicyd package:

yum install fapolicyd

2. Optional: To try your configuration first, change mode to permissive.

a. Open the /etc/fapolicyd/fapolicyd.conf file in a text editor of your choice, for example:

vi /etc/fapolicyd/fapolicyd.conf

b. Change the value of the permissive option from 0 to 1, save the file, and exit the editor:

permissive = 1

Alternatively, you can debug your configuration by using the fapolicyd --debug-deny --
permissive command before you start the service. See the Troubleshooting problems
related to fapolicyd section for more information.

3. Enable and start the fapolicyd service:

systemctl enable --now fapolicyd

4. If you enabled permissive mode through /etc/fapolicyd/fapolicyd.conf:

a. Set the Audit service for recording fapolicyd events:

auditctl -w /etc/fapolicyd/ -p wa -k fapolicyd_changes
service try-restart auditd

b. Use your applications.

c. Check Audit logs for fanotify denials, for example:

ausearch -ts recent -m fanotify

d. When debugged, disable permissive mode by changing the corresponding value back to
permissive = 0, and restart the service:

systemctl restart fapolicyd

Verification

1. Verify that the fapolicyd service is running correctly:

systemctl status fapolicyd
● fapolicyd.service - File Access Policy Daemon
 Loaded: loaded (/usr/lib/systemd/system/fapolicyd.service; enabled; preset: disabled)
 Active: active (running) since Tue 2024-10-08 05:53:50 EDT; 11s ago
…
Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Loading trust data from rpmdb
backend

Red Hat Enterprise Linux 8 Security hardening

142

Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Loading trust data from file
backend
Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Starting to listen for events

2. Log in as a user without root privileges, and check that fapolicyd is working, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

12.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE
OF TRUST

The fapolicyd framework trusts files contained in the RPM database. You can mark additional files as
trusted by adding the corresponding entries to the /etc/fapolicyd/fapolicyd.trust plain-text file or the
/etc/fapolicyd/trust.d/ directory, which supports separating a list of trusted files into more files. You can
modify fapolicyd.trust or the files in /etc/fapolicyd/trust.d either directly using a text editor or through
fapolicyd-cli commands.

NOTE

Marking files as trusted using fapolicyd.trust or trust.d/ is better than writing custom
fapolicyd rules due to performance reasons.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Mark your custom binary as trusted, and store the corresponding entry to the myapp file in
/etc/fapolicyd/trust.d/:

fapolicyd-cli --file add /tmp/ls --trust-file myapp

If you skip the --trust-file option, then the previous command adds the corresponding line
to /etc/fapolicyd/fapolicyd.trust.

To mark all existing files in a directory as trusted, provide the directory path as an argument
of the --file option, for example: fapolicyd-cli --file add /tmp/my_bin_dir/ --trust-file
myapp.

3. Update the fapolicyd database:

fapolicyd-cli --update

NOTE

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

143

NOTE

Changing the content of a trusted file or directory changes their checksum, and therefore
fapolicyd no longer considers them trusted.

To make the new content trusted again, refresh the file trust database by using the
fapolicyd-cli --file update command. If you do not provide any argument, the entire
database refreshes. Alternatively, you can specify a path to a specific file or directory.
Then, update the database by using fapolicyd-cli --update.

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

fapolicyd.trust(13) man page on your system

12.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD

The default set of rules in the fapolicyd package does not affect system functions. For custom
scenarios, such as storing binaries and scripts in a non-standard directory or adding applications without
the yum or rpm installers, you must either mark additional files as trusted or add new custom rules.

For basic scenarios, prefer Marking files as trusted using an additional source of trust . In more advanced
scenarios such as allowing to execute a custom binary only for specific user and group identifiers, add
new custom rules to the /etc/fapolicyd/rules.d/ directory.

The following steps demonstrate adding a new rule to allow a custom binary.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Stop the fapolicyd service:

systemctl stop fapolicyd

3. Use debug mode to identify a corresponding rule. Because the output of the fapolicyd --debug
command is verbose and you can stop it only by pressing Ctrl+C or killing the corresponding
process, redirect the error output to a file. In this case, you can limit the output only to access
denials by using the --debug-deny option instead of --debug:

Red Hat Enterprise Linux 8 Security hardening

144

fapolicyd --debug-deny 2> fapolicy.output &
[1] 51341

Alternatively, you can run fapolicyd debug mode in another terminal.

4. Repeat the command that fapolicyd denied:

$ /tmp/ls
bash: /tmp/ls: Operation not permitted

5. Stop debug mode by resuming it in the foreground and pressing Ctrl+C:

fg
fapolicyd --debug 2> fapolicy.output
^C
...

Alternatively, kill the process of fapolicyd debug mode:

kill 51341

6. Find a rule that denies the execution of your application:

cat fapolicy.output | grep 'deny_audit'
...
rule=13 dec=deny_audit perm=execute auid=0 pid=6855 exe=/usr/bin/bash : path=/tmp/ls
ftype=application/x-executable trust=0

7. Locate the file that contains a rule that prevented the execution of your custom binary. In this
case, the deny_audit perm=execute rule belongs to the 90-deny-execute.rules file:

ls /etc/fapolicyd/rules.d/
10-languages.rules 40-bad-elf.rules 72-shell.rules
20-dracut.rules 41-shared-obj.rules 90-deny-execute.rules
21-updaters.rules 42-trusted-elf.rules 95-allow-open.rules
30-patterns.rules 70-trusted-lang.rules

cat /etc/fapolicyd/rules.d/90-deny-execute.rules
Deny execution for anything untrusted

deny_audit perm=execute all : all

8. Add a new allow rule to the file that lexically precedes the rule file that contains the rule that
denied the execution of your custom binary in the /etc/fapolicyd/rules.d/ directory:

touch /etc/fapolicyd/rules.d/80-myapps.rules
vi /etc/fapolicyd/rules.d/80-myapps.rules

Insert the following rule to the 80-myapps.rules file:

allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-executable
trust=0

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

145

Alternatively, you can allow executions of all binaries in the /tmp directory by adding the
following rule to the rule file in /etc/fapolicyd/rules.d/:

allow perm=execute exe=/usr/bin/bash trust=1 : dir=/tmp/ trust=0

IMPORTANT

To make a rule effective recursively on all directories under the specified
directory, add a trailing slash to the value of the dir= parameter in the rule (/tmp/
in the previous example).

9. To prevent changes in the content of your custom binary, define the required rule using an
SHA-256 checksum:

$ sha256sum /tmp/ls
780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836 ls

Change the rule to the following definition:

allow perm=execute exe=/usr/bin/bash trust=1 :
sha256hash=780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836

10. Check that the list of compiled differs from the rule set in /etc/fapolicyd/rules.d/, and update
the list, which is stored in the /etc/fapolicyd/compiled.rules file:

fagenrules --check
/usr/sbin/fagenrules: Rules have changed and should be updated
fagenrules --load

11. Check that your custom rule is in the list of fapolicyd rules before the rule that prevented the
execution:

fapolicyd-cli --list
...
13. allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-
executable trust=0
14. deny_audit perm=execute all : all
...

12. Start the fapolicyd service:

systemctl start fapolicyd

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

Red Hat Enterprise Linux 8 Security hardening

146

fapolicyd.rules(5) and fapolicyd-cli(1) man pages on your system

The documentation installed with the fapolicyd package in the /usr/share/fapolicyd/sample-
rules/README-rules file.

12.5. ENABLING FAPOLICYD INTEGRITY CHECKS

By default, fapolicyd does not perform integrity checking. You can configure fapolicyd to perform
integrity checks by comparing either file sizes or SHA-256 hashes. You can also set integrity checks by
using the Integrity Measurement Architecture (IMA) subsystem.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Open the /etc/fapolicyd/fapolicyd.conf file in a text editor of your choice, for example:

vi /etc/fapolicyd/fapolicyd.conf

2. Change the value of the integrity option from none to sha256, save the file, and exit the editor:

integrity = sha256

3. Restart the fapolicyd service:

systemctl restart fapolicyd

Verification

1. Back up the file used for the verification:

cp /bin/more /bin/more.bak

2. Change the content of the /bin/more binary:

cat /bin/less > /bin/more

3. Use the changed binary as a regular user:

su example.user
$ /bin/more /etc/redhat-release
bash: /bin/more: Operation not permitted

4. Revert the changes:

mv -f /bin/more.bak /bin/more

12.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD

The fapolicyd application framework provides tools for troubleshooting the most common problems

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

147

The fapolicyd application framework provides tools for troubleshooting the most common problems
and you can also add applications installed with the rpm command to the trust database.

Installing applications by using rpm

If you install an application by using the rpm command, you have to perform a manual refresh of
the fapolicyd RPM database:

1. Install your application:

rpm -i application.rpm

2. Refresh the database:

fapolicyd-cli --update

If you skip this step, the system can freeze and must be restarted.

Service status

If fapolicyd does not work correctly, check the service status:

systemctl status fapolicyd

fapolicyd-cli checks and listings

The --check-config, --check-watch_fs, and --check-trustdb options help you find syntax
errors, not-yet-watched file systems, and file mismatches, for example:

fapolicyd-cli --check-config
Daemon config is OK

fapolicyd-cli --check-trustdb
/etc/selinux/targeted/contexts/files/file_contexts miscompares: size sha256
/etc/selinux/targeted/policy/policy.31 miscompares: size sha256

Use the --list option to check the current list of rules and their order:

fapolicyd-cli --list
...
9. allow perm=execute all : trust=1
10. allow perm=open all : ftype=%languages trust=1
11. deny_audit perm=any all : ftype=%languages
12. allow perm=any all : ftype=text/x-shellscript
13. deny_audit perm=execute all : all
...

Debug mode

Debug mode provides detailed information about matched rules, database status, and more. To
switch fapolicyd to debug mode:

1. Stop the fapolicyd service:

Red Hat Enterprise Linux 8 Security hardening

148

systemctl stop fapolicyd

2. Use debug mode to identify a corresponding rule:

fapolicyd --debug

Because the output of the fapolicyd --debug command is verbose, you can redirect the
error output to a file:

fapolicyd --debug 2> fapolicy.output

Alternatively, to limit the output only to entries when fapolicyd denies access, use the --
debug-deny option:

fapolicyd --debug-deny

You can also use permissive mode, which does not prevent running your application but only
records the matched fapolicyd rule:

fapolicyd --debug-deny --permissive

Removing the fapolicyd database

To solve problems related to the fapolicyd database, try to remove the database file:

systemctl stop fapolicyd
fapolicyd-cli --delete-db

WARNING

Do not remove the /var/lib/fapolicyd/ directory. The fapolicyd framework
automatically restores only the database file in this directory.

Dumping the fapolicyd database

The fapolicyd contains entries from all enabled trust sources. You can check the entries after
dumping the database:

fapolicyd-cli --dump-db

Application pipe

In rare cases, removing the fapolicyd pipe file can solve a lockup:

rm -f /var/run/fapolicyd/fapolicyd.fifo

Additional resources

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

149

fapolicyd-cli(1) man page on your system

12.7. PREVENTING USERS FROM EXECUTING UNTRUSTWORTHY
CODE BY USING THE FAPOLICYD RHEL SYSTEM ROLE

You can automate the installation and configuration of the fapolicyd service by using the fapolicyd
RHEL system role. With this role, you can remotely configure the service to allow users to execute only
trusted applications, for example, the ones which are listed in the RPM database and in an allow list.
Additionally, the service can perform integrity checks before it executes an allowed application.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The settings specified in the example playbook include the following:

fapolicyd_setup_permissive: <true|false>

Enables or disables sending policy decisions to the kernel for enforcement. Set this variable
for debugging and testing purposes to false.

fapolicyd_setup_integrity: <type_type>

Defines the integrity checking method. You can set one of the following values:

none (default): Disables integrity checking.

size: The service compares only the file sizes of allowed applications.

ima: The service checks the SHA-256 hash that the kernel’s Integrity Measurement
Architecture (IMA) stored in a file’s extended attribute. Additionally, the service
performs a size check. Note that the role does not configure the IMA kernel subsystem.
To use this option, you must manually configure the IMA subsystem.

- name: Configuring fapolicyd
 hosts: managed-node-01.example.com
 tasks:
 - name: Allow only executables installed from RPM database and specific files
 ansible.builtin.include_role:
 name: rhel-system-roles.fapolicyd
 vars:
 fapolicyd_setup_permissive: false
 fapolicyd_setup_integrity: sha256
 fapolicyd_setup_trust: rpmdb,file
 fapolicyd_add_trusted_file:
 - <path_to_allowed_command>
 - <path_to_allowed_service>

Red Hat Enterprise Linux 8 Security hardening

150

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

sha256: The service compares the SHA-256 hash of allowed applications.

fapolicyd_setup_trust: <trust_backends>

Defines the list of trust backends. If you include the file backend, specify the allowed
executable files in the fapolicyd_add_trusted_file list.

For details about all variables used in the playbook, see the /usr/share/ansible/roles/rhel-
system-roles.fapolicyd.README.md file on the control node.

2. Validate the playbook syntax:

$ ansible-playbook ~/playbook.yml --syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

Execute a binary application that is not on the allow list as a user:

$ ansible managed-node-01.example.com -m command -a 'su -c
"/bin/not_authorized_application " <user_name>'
bash: line 1: /bin/not_authorized_application: Operation not permitted non-zero return code

Additional resources

/usr/share/ansible/roles/rhel-system-roles.fapolicyd/README.md file

/usr/share/doc/rhel-system-roles/fapolicyd/ directory

12.8. ADDITIONAL RESOURCES

fapolicyd-related man pages listed by using the man -k fapolicyd command on your system

FOSDEM 2020 fapolicyd presentation

CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

151

https://rsroka.fedorapeople.org/fapolicyd-fosdem.pdf

CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE
USB DEVICES

USB devices can be loaded with spyware, malware, or trojans, which can steal your data or damage your
system. As a Red Hat Enterprise Linux administrator, you can prevent such USB attacks with USBGuard.

13.1. USBGUARD

With the USBGuard software framework, you can protect your systems against intrusive USB devices by
using basic lists of permitted and forbidden devices based on the USB device authorization feature in
the kernel.

The USBGuard framework provides the following components:

The system service component with an inter-process communication (IPC) interface for
dynamic interaction and policy enforcement

The command line to interact with a running usbguard system service

The rule language for writing USB device authorization policies

The C++ API for interacting with the system service component implemented in a shared library

The usbguard system service configuration file (/etc/usbguard/usbguard-daemon.conf) includes the
options to authorize the users and groups to use the IPC interface.

IMPORTANT

The system service provides the USBGuard public IPC interface. In Red Hat
Enterprise Linux, the access to this interface is limited to the root user only by default.

Consider setting either the IPCAccessControlFiles option (recommended) or the
IPCAllowedUsers and IPCAllowedGroups options to limit access to the IPC interface.

Ensure that you do not leave the Access Control List (ACL) unconfigured as this exposes
the IPC interface to all local users and allows them to manipulate the authorization state
of USB devices and modify the USBGuard policy.

13.2. INSTALLING USBGUARD

Use this procedure to install and initiate the USBGuard framework.

Procedure

1. Install the usbguard package:

yum install usbguard

2. Create an initial rule set:

usbguard generate-policy > /etc/usbguard/rules.conf

3. Start the usbguard daemon and ensure that it starts automatically on boot:

Red Hat Enterprise Linux 8 Security hardening

152

systemctl enable --now usbguard

Verification

1. Verify that the usbguard service is running:

systemctl status usbguard
● usbguard.service - USBGuard daemon
 Loaded: loaded (/usr/lib/systemd/system/usbguard.service; enabled; vendor preset:
disabled)
 Active: active (running) since Thu 2019-11-07 09:44:07 CET; 3min 16s ago
 Docs: man:usbguard-daemon(8)
 Main PID: 6122 (usbguard-daemon)
 Tasks: 3 (limit: 11493)
 Memory: 1.2M
 CGroup: /system.slice/usbguard.service
 └─6122 /usr/sbin/usbguard-daemon -f -s -c /etc/usbguard/usbguard-daemon.conf

Nov 07 09:44:06 localhost.localdomain systemd[1]: Starting USBGuard daemon...
Nov 07 09:44:07 localhost.localdomain systemd[1]: Started USBGuard daemon.

2. List USB devices recognized by USBGuard:

usbguard list-devices
4: allow id 1d6b:0002 serial "0000:02:00.0" name "xHCI Host Controller" hash...

Additional resources

usbguard(1) and usbguard-daemon.conf(5) man pages.

13.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI

You can set USBGuard to authorize and block a USB device by using the usbguard command in your
terminal.

Prerequisites

The usbguard service is installed and running.

Procedure

1. List USB devices recognized by USBGuard, for example:

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

153

2. Authorize the device <6> to interact with the system:

usbguard allow-device <6>

3. Deauthorize and remove the device <6>:

usbguard reject-device <6>

4. Deauthorize and retain the device <6>:

usbguard block-device <6>

NOTE

USBGuard uses the terms block and reject with the following meanings:

block

Do not interact with this device for now.

reject

Ignore this device as if it does not exist.

Additional resources

usbguard(1) man page on your system

usbguard --help command

13.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE

You can permanently block and authorize a USB device by using the -p option. This adds a device-
specific rule to the current policy.

Prerequisites

The usbguard service is installed and running.

Procedure

1. Configure SELinux to allow the usbguard daemon to write rules.

a. Display the semanage Booleans relevant to usbguard.

semanage boolean -l | grep usbguard
usbguard_daemon_write_conf (off , off) Allow usbguard to daemon write conf
usbguard_daemon_write_rules (on , on) Allow usbguard to daemon write rules

b. Optional: If the usbguard_daemon_write_rules Boolean is turned off, turn it on.

semanage boolean -m --on usbguard_daemon_write_rules

2. List USB devices recognized by USBGuard:

Red Hat Enterprise Linux 8 Security hardening

154

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

3. Permanently authorize device 6 to interact with the system:

usbguard allow-device 6 -p

4. Permanently deauthorize and remove device 6:

usbguard reject-device 6 -p

5. Permanently deauthorize and retain device 6:

usbguard block-device 6 -p

NOTE

USBGuard uses the terms block and reject with the following meanings:

block

Do not interact with this device for now.

reject

Ignore this device as if it does not exist.

Verification

1. Check that USBGuard rules include the changes you made.

usbguard list-rules

Additional resources

usbguard(1) man page on your system

Built-in help listed by using the usbguard --help command.

13.5. CREATING A CUSTOM POLICY FOR USB DEVICES

The following procedure contains steps for creating a rule set for USB devices that reflects the
requirements of your scenario.

Prerequisites

The usbguard service is installed and running.

CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

155

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to the rules.conf file:

usbguard generate-policy --no-hashes > ./rules.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Edit the rules.conf file with a text editor of your choice, for example:

vi ./rules.conf

3. Add, remove, or edit the rules as required. For example, the following rule allows only devices
with a single mass storage interface to interact with the system:

allow with-interface equals { 08:*:* }

See the usbguard-rules.conf(5) man page for a detailed rule-language description and more
examples.

4. Install the updated policy:

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

5. Restart the usbguard daemon to apply your changes:

systemctl restart usbguard

Verification

1. Check that your custom rules are in the active policy, for example:

usbguard list-rules
...
4: allow with-interface 08:*:*
...

Additional resources

usbguard-rules.conf(5) man page on your system

13.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES

You can organize your custom USBGuard policy in several .conf files within the /etc/usbguard/rules.d/
directory. The usbguard-daemon then combines the main rules.conf file with the .conf files within the
directory in alphabetical order.

Red Hat Enterprise Linux 8 Security hardening

156

Prerequisites

The usbguard service is installed and running.

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to a new .conf file, for example, policy.conf.

usbguard generate-policy --no-hashes > ./policy.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Display the policy.conf file with a text editor of your choice, for example:

vi ./policy.conf
...
allow id 04f2:0833 serial "" name "USB Keyboard" via-port "7-2" with-interface { 03:01:01
03:00:00 } with-connect-type "unknown"
...

3. Move selected lines into a separate .conf file.

NOTE

The two digits at the beginning of the file name specify the order in which the
daemon reads the configuration files.

For example, copy the rules for your keyboards into a new .conf file.

grep "USB Keyboard" ./policy.conf > ./10keyboards.conf

4. Install the new policy to the /etc/usbguard/rules.d/ directory.

install -m 0600 -o root -g root 10keyboards.conf /etc/usbguard/rules.d/10keyboards.conf

5. Move the rest of the lines to a main rules.conf file.

grep -v "USB Keyboard" ./policy.conf > ./rules.conf

6. Install the remaining rules.

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

7. Restart the usbguard daemon to apply your changes.

systemctl restart usbguard

Verification

1. Display all active USBGuard rules.

CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

157

usbguard list-rules
...
15: allow id 04f2:0833 serial "" name "USB Keyboard" hash
"kxM/iddRe/WSCocgiuQlVs6Dn0VEza7KiHoDeTz0fyg=" parent-hash
"2i6ZBJfTl5BakXF7Gba84/Cp1gslnNc1DM6vWQpie3s=" via-port "7-2" with-interface {
03:01:01 03:00:00 } with-connect-type "unknown"
...

2. Display the contents of the rules.conf file and all the .conf files in the /etc/usbguard/rules.d/
directory.

cat /etc/usbguard/rules.conf /etc/usbguard/rules.d/*.conf

3. Verify that the active rules contain all the rules from the files and are in the correct order.

Additional resources

usbguard-rules.conf(5) man page on your system

13.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC
INTERFACE

Use this procedure to authorize a specific user or a group to use the USBGuard public IPC interface. By
default, only the root user can use this interface.

Prerequisites

The usbguard service is installed and running.

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Procedure

1. Edit the /etc/usbguard/usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. For example, add a line with a rule that allows all users in the wheel group to use the IPC
interface, and save the file:

IPCAllowGroups=wheel

3. You can add users or groups also with the usbguard command. For example, the following
command enables the joesec user to have full access to the Devices and Exceptions sections.
Furthermore, joesec can list and modify the current policy:

usbguard add-user joesec --devices ALL --policy modify,list --exceptions ALL

To remove the granted permissions for the joesec user, use the usbguard remove-user joesec
command.

4. Restart the usbguard daemon to apply your changes:

Red Hat Enterprise Linux 8 Security hardening

158

systemctl restart usbguard

Additional resources

usbguard(1) and usbguard-rules.conf(5) man pages.

13.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX
AUDIT LOG

Use the following steps to integrate logging of USBguard authorization events to the standard Linux
Audit log. By default, the usbguard daemon logs events to the /var/log/usbguard/usbguard-audit.log
file.

Prerequisites

The usbguard service is installed and running.

The auditd service is running.

Procedure

1. Edit the usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. Change the AuditBackend option from FileAudit to LinuxAudit:

AuditBackend=LinuxAudit

3. Restart the usbguard daemon to apply the configuration change:

systemctl restart usbguard

Verification

1. Query the audit daemon log for a USB authorization event, for example:

ausearch -ts recent -m USER_DEVICE

Additional resources

usbguard-daemon.conf(5) man page on your system

13.9. ADDITIONAL RESOURCES

usbguard(1), usbguard-rules.conf(5), usbguard-daemon(8), and usbguard-daemon.conf(5)
man pages.

USBGuard Homepage.

CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

159

https://usbguard.github.io/

Red Hat Enterprise Linux 8 Security hardening

160

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. SECURING RHEL DURING AND RIGHT AFTER INSTALLATION
	1.1. DISK PARTITIONING
	1.2. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
	1.3. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
	1.4. POST-INSTALLATION PROCEDURES
	1.5. DISABLING SMT TO PREVENT CPU SECURITY ISSUES BY USING THE WEB CONSOLE

	CHAPTER 2. SWITCHING RHEL TO FIPS MODE
	2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS MODE
	RHEL in FIPS mode
	Switching to FIPS mode after the installation
	FIPS in crypto-policies

	2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
	2.3. SWITCHING THE SYSTEM TO FIPS MODE
	2.4. ENABLING FIPS MODE IN A CONTAINER
	2.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-2

	CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	3.2. CHANGING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY
	3.3. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER RELEASES
	3.4. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE
	3.5. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	3.5.1. Examples of opting out of the system-wide cryptographic policies

	3.6. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH SUBPOLICIES
	3.7. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE CRYPTOGRAPHIC POLICY
	3.8. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY
	3.9. ENHANCING SECURITY WITH THE FUTURE CRYPTOGRAPHIC POLICY USING THE CRYPTO_POLICIES RHEL SYSTEM ROLE
	3.10. ADDITIONAL RESOURCES

	CHAPTER 4. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11
	4.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
	4.2. AUTHENTICATING BY SSH KEYS STORED ON A SMART CARD
	4.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH CERTIFICATES ON SMART CARDS
	4.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
	4.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT
	5.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT
	5.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND POLKIT
	5.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT AUTHORIZATION TO PC/SC
	5.4. ADDITIONAL RESOURCES

	CHAPTER 6. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
	6.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
	6.2. VULNERABILITY SCANNING
	6.2.1. Red Hat Security Advisories OVAL feed
	6.2.2. Scanning the system for vulnerabilities
	6.2.3. Scanning remote systems for vulnerabilities

	6.3. CONFIGURATION COMPLIANCE SCANNING
	6.3.1. Configuration compliance in RHEL
	6.3.2. Possible results of an OpenSCAP scan
	6.3.3. Viewing profiles for configuration compliance
	6.3.4. Assessing configuration compliance with a specific baseline

	6.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
	6.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING AN SSG ANSIBLE PLAYBOOK
	6.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE
	6.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
	6.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH
	6.8.1. Using SCAP Workbench to scan and remediate the system
	6.8.2. Customizing a security profile with SCAP Workbench
	6.8.3. Additional resources

	6.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN INSTALLATION
	6.9.1. Profiles not compatible with Server with GUI
	6.9.2. Deploying baseline-compliant RHEL systems using the graphical installation
	6.9.3. Deploying baseline-compliant RHEL systems using Kickstart

	6.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
	6.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC BASELINE
	6.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8
	6.13. ADDITIONAL RESOURCES

	CHAPTER 7. CHECKING INTEGRITY WITH AIDE
	7.1. INSTALLING AIDE
	7.2. PERFORMING INTEGRITY CHECKS WITH AIDE
	7.3. UPDATING AN AIDE DATABASE
	7.4. FILE-INTEGRITY TOOLS: AIDE AND IMA
	7.5. ADDITIONAL RESOURCES

	CHAPTER 8. ENHANCING SECURITY WITH THE KERNEL INTEGRITY SUBSYSTEM
	8.1. THE KERNEL INTEGRITY SUBSYSTEM
	8.2. TRUSTED AND ENCRYPTED KEYS
	8.3. WORKING WITH TRUSTED KEYS
	8.4. WORKING WITH ENCRYPTED KEYS
	8.5. ENABLING IMA AND EVM
	8.6. COLLECTING FILE HASHES WITH INTEGRITY MEASUREMENT ARCHITECTURE

	CHAPTER 9. ENCRYPTING BLOCK DEVICES USING LUKS
	9.1. LUKS DISK ENCRYPTION
	9.2. LUKS VERSIONS IN RHEL
	9.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
	9.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
	9.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
	9.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
	9.7. CONFIGURING THE LUKS PASSPHRASE IN THE WEB CONSOLE
	9.8. CHANGING THE LUKS PASSPHRASE IN THE WEB CONSOLE
	9.9. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE

	CHAPTER 10. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION
	10.1. NETWORK-BOUND DISK ENCRYPTION
	10.2. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
	10.3. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
	10.4. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY IN THE WEB CONSOLE
	10.5. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
	10.6. CONFIGURING NBDE CLIENTS FOR AUTOMATED UNLOCKING OF LUKS-ENCRYPTED VOLUMES
	10.7. CONFIGURING NBDE CLIENTS WITH STATIC IP CONFIGURATION
	10.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING A TPM 2.0 POLICY
	10.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
	10.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING KICKSTART
	10.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE
	10.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
	High-available NBDE using Shamir’s Secret Sharing
	Example 1: Redundancy with two Tang servers
	Example 2: Shared secret on a Tang server and a TPM device

	10.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
	10.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS BY USING NBDE
	10.15. DEPLOYING TANG AS A CONTAINER
	10.16. CONFIGURING NBDE BY USING RHEL SYSTEM ROLES
	10.16.1. Using the nbde_server RHEL system role for setting up multiple Tang servers
	10.16.2. Setting up Clevis clients with DHCP by using the nbde_client RHEL system role
	10.16.3. Setting up static-IP Clevis clients by using the nbde_client RHEL system role

	CHAPTER 11. AUDITING THE SYSTEM
	11.1. LINUX AUDIT
	11.2. AUDIT SYSTEM ARCHITECTURE
	11.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
	11.4. STARTING AND CONTROLLING AUDITD
	11.5. UNDERSTANDING AUDIT LOG FILES
	11.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES
	11.7. DEFINING PERSISTENT AUDIT RULES
	11.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH STANDARDS
	11.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
	11.10. DISABLING AUGENRULES
	11.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES
	11.12. MONITORING USER LOGIN TIMES WITH AUDIT
	11.13. ADDITIONAL RESOURCES

	CHAPTER 12. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD
	12.1. INTRODUCTION TO FAPOLICYD
	12.2. DEPLOYING FAPOLICYD
	12.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST
	12.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
	12.5. ENABLING FAPOLICYD INTEGRITY CHECKS
	12.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
	12.7. PREVENTING USERS FROM EXECUTING UNTRUSTWORTHY CODE BY USING THE FAPOLICYD RHEL SYSTEM ROLE
	12.8. ADDITIONAL RESOURCES

	CHAPTER 13. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
	13.1. USBGUARD
	13.2. INSTALLING USBGUARD
	13.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI
	13.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
	13.5. CREATING A CUSTOM POLICY FOR USB DEVICES
	13.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
	13.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
	13.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
	13.9. ADDITIONAL RESOURCES

