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Abstract—Due to the development of internet technology and
computer science, data is exploding at an exponential rate. Big
data brings us new opportunities and challenges. On the one
hand, we can analyze and mine big data to discover hidden
information and get more potential value. On the other hand,
the 5V characteristic of big data, especially Volume which means
large amount of data, brings challenges to storage and processing.
For some traditional data mining algorithms, machine learning
algorithms and data profiling tasks, it is very difficult to handle
such a large amount of data. The large amount of data is highly
demanding hardware resources and time consuming. Sampling
methods can effectively reduce the amount of data and help
speed up data processing. Hence, sampling technology has been
widely studied and used in big data context, e.g., methods for
determining sample size, combining sampling with big data
processing frameworks. Data profiling is the activity that finds
metadata of data set and has many use cases, e.g., performing
data profiling tasks on relational data, graph data, and time
series data for anomaly detection and data repair. However, data
profiling is computationally expensive, especially for large data
sets. Therefore, this paper focuses on researching sampling and
profiling in big data context and investigates the application of
sampling in different categories of data profiling tasks. From
the experimental results of these studies, the results got from
the sampled data are close to or even exceed the results of the
full amount of data. Therefore, sampling technology plays an
important role in the era of big data, and we also have reason
to believe that sampling technology will become an indispensable
step in big data processing in the future.

Index Terms—Big Data, Large Amount, Sampling, Data Pro-
filing

I. INTRODUCTION

WE are in the era of big data. With the development of

computer science and internet technology, data is ex-

ploding at an exponential rate. According to statistics, Google

processes more than hundreds of PB data per day, Facebook

generates more than 10 PB of log data per month, Baidu

processes nearly 100 PB of data per day, and Taobao generates

dozens of terabytes online transaction data every day [1]. In

May 2011, the McKinsey Global Institution (MGI) released

the report1 which said that big data has great potential in the

European Public Sector, US Health Care, Manufacturing, US

Retail Industry and Location-based Services. MGI estimates in

the report that the mining and analysis of big data will generate

300 billion in potential value per year in the US medical sector

and more than 149 billion in the European public sector [2]. It

1The Next Frontier of Big Data: Innovation, Competition, and Productivity

can be seen that there is great value behind big data. Therefore,

mining the hidden value under big data makes a lot of sense.

Big data is something so huge and complex that it is difficult

or impossible for traditional systems and tools to process and

work on it [3]. In the latest development, IBM uses ”5Vs”

model to depict big data. In the ”5Vs” model, Volume means

the amount of data and it is the most direct difficulty faced

by traditional systems; Velocity means that data is generated

quickly; Variety means that data sources and data types are

diverse including structural, semi-structured, and unstructured

data; Value is the most important feature of big data, although

the value density of data is low; Veracity refers to that data

quality of big data where there is dirty data. Because big data

is so large that data analysis and data mining based on big

data require high computing power and storage capacity. In

addition, some classical mining algorithms that require several

passes over the whole dataset may take hours or even days to

get result [4].

A. Data Sampling

At present, there are two major strategies for data mining

and data analysis: sampling and using distributed systems [5].

The existing big data processing framework includes batch

processing framework like Apache Hadoop, streaming data

processing framework like Apache Storm, hybrid processing

framework like Apache Spark and Apache Flink. Sampling

is a scientific method of selecting representative sample data

from target data. Designing a big data sampling mechanism

is to reduce the amount of data to a manageable size for

processing [6]. Even if computer clusters are available, we

can use sampling such as block-level sampling to speed up

big data analysis [7].

Different from distributed systems, sampling is a kind

of data reduction method like filtering. Distributed systems

increase computing power by adding hardware resources.

However, a huge computing cost is not always affordable

in practice. It is highly demanded to perform the computing

under limited resources. In this sense, sampling is very useful.

Since the full amount of data is not used, the approximate re-

sult is obtained from the sample data. Such approximate result

is quite useful in the context of big data. The computational

challenge of big data means that sampling is essential and

the sampling methods chosen by researchers is also important

[8]. Besides, the biases caused by sampling are also something

need to be considered.

http://arxiv.org/abs/2005.05079v1
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Sampling or re-sampling is to use less data to get the overall

characteristics of the whole dataset. Albattah [9] studies the

role of sampling in big data analysis. He believes that even if

we can handle the full amount of data, we don’t have to do this.

They focus on how sampling will play its role in specific fields

of Artificial Intelligence and verify it by doing experiments.

The experimental results show that sampling not only reduces

the data processing time, but also get better results in some

cases. Even though some examples of sampling are not as

effective as the original dataset, they are obviously negligible

compared to the greatly reduced processing time. As stated in

[9], we believe that sampling can improve big data analysis

and will become a preprocessing step in big data processing

in the future.

When it comes to sampling, how to determine the sample

size is a very important factor, and different scholars have

proposed many methods to determine the sample size [10]–

[13]. And we also have to consider sampling bias when using

sampling techniques. In addition, some scholars have also

studied the application of sampling techniques in the context

of big data, e.g., combining sampling with distributed storage,

big data computing frameworks. And these will be introduced

in detail in Section III.

B. Data Profiling

Data mining is an emerging research area, whose goal is

to extract significant patterns or interesting rules from large

data sets [14]. Data profiling gathers metadata of data that

can be used to find data to be mined and import data into

various tools for analysis, which is an important preparatory

task [15]. There is currently no formal, universal or widely

accepted definition of distinction between data profiling and

data mining. Abedjan et al. [16] think data profiling is used to

generate metadata for data sets that are used to help understand

data sets and manage data sets. However, data mining is used

to mine the hidden knowledge behind the data, which is not so

obvious. Of course, data profiling and data mining also have

some overlapping tasks, such as association rule mining and

clustering. In summary, the goal of data profiling is to generate

summary information about the data to help understand the

data, and the goal of data mining is to mine the new insights

of the data.

There are many use cases of data profiling, such as data

profiling for missing data imputation [17], [18] or erroneous

data repairing in relational database [19]. However, data pro-

filing itself has to face computational challenges, especially

when it comes to large data sets. Hence, how to alleviate the

computational challenges of data profiling is very significant

in era of big data. As mentioned above, sampling for big data

profiling is very valuable and meaningful. We will give a brief

introduction for data profiling in Section II.

C. Sampling for Data Profiling

In this paper, we focus on the sampling techniques used

for big data profiling. Certainly, we will first introduce data

profiling and sampling technology separately. Among them,

data profiling has been associated with outstanding survey

Fig. 1: A classification of typical data profiling tasks [16].

papers such as [16]. Finally, our core content is to introduce

the application of sampling in data profiling tasks when facing

large data sets.

In [16], the research on data profiling around the relational

database is fully investigated and introduced. The classification

of data profiling (see Figure 1) is given in [16]. We will investi-

gate the sampling techniques for important data profiling tasks

in single column, multiple columns and dependency according

to the classification of data profiling in [16]. Some traditional

sampling methods are introduced in [10], and methods of

determining the sample size are mainly introduced, but less

attention is paid to sampling in big data context. Therefore,

when discussing the sampling technology below, we will

supplement some applications and information of sampling in

the big data scenario, e.g., block-based sampling.

Specifically, in order to ensure the comprehensiveness of the

survey, we follow the systematic search method provided in

[16], a comprehensive summary of data profiling techniques.

As also illustrated in Figure 1 of our manuscript, Abedjan et al.

[16] categorize the data profiling approaches into three aspects,

from the elementary columns to the complex ones, i.e., (1) data

profiling for single columns, (2) data profiling for multiple

columns, and (3) data profiling for dependencies. While the

sampling techniques for data profiling are not emphasized in

[16], in our paper, we extensively select the studies on sam-
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Fig. 2: A systematic search method for selecting studies,

following the categorization in Figure 1 by [16].

pling for data profiling in the aforesaid categories, respectively.

Figure 2 presents the systematic search method for selecting

studies, following the categorization in [13]. Following this

method, we summarize the typical methods selected in each

category in Table III.

The remaining of this paper is organized as follows. In

Section II, we introduce the relevant knowledge of data

profiling. In Section III, we introduce sampling techniques

and some important factors in sampling techniques. Next we

introduce the application of sampling for single-column data

profiling tasks in Section IV, multi-column data profiling tasks

in Section V and dependencies in Section VI based on the

classification of data profiling tasks in [16]. Finally, in Section

VII, we summarize the content of the article and propose some

future works. The organizational structure of this article is

shown in Figure 2.

II. DATA PROFILING

Before using or processing data, it is very important to have

a general understanding of the data. Data profiling is the ac-

tivity that finds metadata of data set [16], [20], [21], therefore

it can provide basic information about data to help people

understand the data. Data profiling is an important area of

research for many IT experts and scholars. Data profiling has

many classic use cases, such as data integration, data quality,

data cleansing, big data analysis, database management, query

optimization [16], [20]. Abedjan et al. [16] mainly investigates

data profiling for relational data. However, in addition to

relational databases, many non-relational databases need data

profiling [20], such as time series data [22]–[24], graph data

[25]–[27], or heterogeneous data in dataspaces [28]–[30].

Data profiling tasks are classified in [16] and [20]. Abedjan

et al. [16] classify the data profiling tasks of single data

source, and divides the tasks of data profiling into single

column data profiling, multiple columns data profiling and

dependency (see Figure 1). In fact, dependencies belong to

multiple columns data profiling tasks. Abedjan et al. [16] put

dependencies separately into a large category and discuss it in

detail. Naumann [20] classifies data profiling from single data

source to multiple data sources.

There are three challenges for data profiling: managing

the input, performing the computation and managing the

output [16], [20], [31]. In this article we focus on the second

challenge, performing the computation, i.e., the computational

complexity of data profiling. The computational complexity of

data profiling depends on the number of rows and columns

of data. When the data set is very large, the calculation of

data profiling can be very expensive. This is why we care

about sampling for big data profiling, in order to reduce

the computational pressure and speed up the process of data

profiling.

III. SAMPLING TECHNIQUES

In this section, we introduce common sampling techniques

in III-A, application of sampling technology in big data context

in III-B, methods of determining sample size in III-C and

resolutions of reducing sampling bias in III-D.

A. Common Sampling Techniques

Sampling refers to estimating the characteristics of the

entire population through the representative subsets within

the population [10]. From a big perspective, sampling in-

volves probability and non-probability sampling. Probability

sampling means that every unit in a finite population has a

certain probability to be selected, and it does not necessarily

require equality. Non-probability sampling is generally based

on subjective ideas and inferences, e.g., common web ques-

tionnaires [32], [33]. The sampling methods mentioned below

are all probability sampling methods. Sampling is often used

in data profiling [16], data analysis [34], data mining [6], data

visualization [35], machine learning [36] etc. The advantage of

sampling is that algorithms or models can be conducted using

subset instead of the whole data set. There are some commonly

used sampling techniques including simple random sampling

[37], stratified sampling [38], systematic sampling [39], cluster

sampling [40], oversampling and undersampling [41], [42],

reservoir sampling [43], etc. Table I gives an overview of these

common sampling methods.

B. Sampling in Big Data Context

In the era of big data, the application of sampling is

particularly important due to the large amount of big data. And

sampling can be performed with the help of big data comput-

ing framework. For example, He et al. [44] use MapReduce
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TABLE I: Common sampling methods

Sampling method Description

Simple random sampling Extracting a certain number of samples and each tuple is selected with equal probability.
Stratified random sampling Tuples are divided into homogeneous groups and sample from each group.
Systematic sampling Sampling at regular intervals until the sample size is satisfied.
Cluster sampling Tuples are divided into non-overlapping groups and randomly select some groups as samples.
Oversampling and Undersampling Oversampling randomly repeat the minority class samples, while Undersampling randomly discard

the majority class samples to balance the data.
Reservoir sampling Adding tuples into the reservoir of a fixed size with unknown size of the entire data set.

to sample from the data which contains uncertainty. He et al.

[45] propose a block-based sampling (I-sampling) method for

large-scale dataset when the whole dataset is already assigned

on a distributed system. The processing flow of I-sampling is

shown in Figure 3.

The traditional sampling methods like simple random sam-

pling, stratified sampling and systematic sampling are records-

based. These records-based sampling methods require the

complete pass over the whole dataset. Hence, they are com-

monly used for small or medium scale datasets on single

computer. Even though the whole dataset is already assigned

on a distributed system, it is very difficult to get a high-quality

partition of the original dataset [46]. In the era of big data,

data profiling tasks can be carried out on distributed systems,

e.g., data profiling tasks on HDFS data. Therefore, block-

based sampling proposed in [45] can be used as a promising

sampling method for data stored in distributed machines.

He et al. [45] propose a block-based sampling method for

large-scale dataset. They take block-based sampling as one

of components of their big data learning framework which

is called the asymptotic ensemble learning framework [47].

However, the block-based sampling method is suitable for data

that is randomly ordered and not for those records that are

stored in an orderly manner. In order to solve this problem,

they propose a general block-based sampling method named

I-sampling.

I-sampling contains four steps to get sample. Firstly, I-

sampling divides large-scale dataset into non-overlapping pri-

mary data blocks Ai. Secondly, I-sampling shuffles primary

data blocks Ai to get shuffling data blocks Bi. The purpose

of shuffling is to disrupt the order of original data. Thirdly,

I-sampling randomly selects data from Bi and put it into the

basic blocks to get a block pool C. Finally, a certain number

of basic blocks are randomly selected from the block pool, and

the data in these blocks is taken as sample. In experiments,

He et al. [45] demonstrate that the block-based sampling

has the basically equal means and variances with simple

random sampling. Besides, the distribution of I-sampling data

is approximately the same with original dataset. And RMSEs

of extreme learning machine based on records-based random

sampling and I-sampling are nearly the same. The processing

flow of I-sampling is shown in Figure 3.

As a matter of fact, data contains uncertainty in many

applications. For example, when we do experiments, such as

sampling, uncertainty occurs because there are many potential

results for sampling. Uncertainty means the diversity of poten-

tial outcomes, which is unknown to us. And dealing with big

data with uncertainty distribution is one of the most important

Fig. 3: I-sampling workflow [45].

issues of big data research [44]. The sample quality affects the

accuracy of data profiling. The following example shows how

to use MapReduce to accelerate sampling from a big data set

with uncertainty distribution, and select Minimal Consistent

Subset with better sample quality. Minimal Consistent Subset

(MCS) is a consistent subset with a minimum number of

elements.

He et al. [44] use MapReduce to sample from the data which

contains uncertainty. They propose a Parallel Sampling method

based on Hyper Surface (PSHS) for big data with uncertainty

distribution to get the MCS of the original sample set. Hyper

Surface Classification (HSC) is a classification method based

on Jordan Curve Theorem and put forward by He et al. [48].

The MCS of HSC is a sample subset by selecting one and

only one representative sample from each unit included in

the hyper surface. Some samples in the MCS are replaceable,

while others are not, leading to the uncertainty of elements in

MCS [44]. Because of large-scale of data, they use MapReduce

for parallel sampling. MapReduce is a well-known distributed

computing framework for big data today.

PSHS algorithm needs to execute three kinds of MapReduce

jobs. In the first task, based on the value of each dimension of

the data, the map function places each sample in the region to

which it belongs. The reduce function determines whether this

area is pure, and labels each area with a corresponding label:

pure or impure. In the second task, the corresponding decision

tree is generated and the samples that have no effect on the

generated decision tree must be removed. The third task is the

sampling task, where the map function is to place each sample

in the pure region it belongs to according to the rules. In pure

regions, these samples have the same effect on building the

classifier, hence the reduce task is to randomly select one and

only one from each region for building the MCS. The Minimal

Consistent Subset selected by this parallel sampling is a good
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representation of the original data.

C. Determination of Sample Size

It is very important to select effective samples [49]. If the

sample size is too small, it may get an incorrect conclusion. If

the sample size is too large, the calculation time is too long.

Therefore, when performing machine learning algorithms,

data mining algorithms or data profiling tasks on large-scale

dataset, how to choose the appropriate sampling method and

determine the sample size are important factors in determining

whether the correct result (within the allowable error range)

can be obtained.

There are some classic methods to determine the sample

size. Singh and Masuku [10] have detailed and summarized

these traditional methods. For example, you can take the

sample size in other similar studies as the size of the sample

in your study. Furthermore, you can determine the size of the

sample according to the published tables. These tables deter-

mine the size of sample according to some given evaluation

indicators and the size of the original dataset. Some commonly

used evaluation indicators include the level of precision, the

level of confidence or risk, the degree of variability, etc.

Another method to assure size of sample is to calculate the

size of sample according to some simple calculation formulas,

which calculate the size of sample based on sampling error,

confidence, and P-value. A simple formula (1) for estimating

the sample size [10] is as follows, where n is the sample size,

N is the amount of raw data, e is the level of precision, a

95% confidence level and P = .5 are assumed.:

n =
N

1 +N ∗ e2
(1)

When data mining algorithms are performed based on mas-

sive amounts of data, much of current research prefers to scale

up data mining algorithms to deal with computational (time

and memory) constraints, but some scholars focus on selecting

how many samples to conduct data mining algorithms. In data

mining algorithms, a common formula used to estimate the

number of samples is Probably Close Enough (PCE). The

convergence conditions are determined using PCE standard

to obtain the best sample size for sampling. PCE is calculated

as formula (2).

Pr [|acc(D)− acc(Di)| ≥ ǫ] ≤ δ (2)

Where Di represents sample data, D represents all data,

ǫ represents the error range threshold of accuracy, and δ

represents probability.

Furthermore, Satyanarayana [11] proposes a dynamic adap-

tive sampling method for estimating the amount of data re-

quired for the learning curve to converge at each iteration. The

author applies Chebyshev inequality to derive an expression

that will estimate the number of instances at each iteration,

which takes advantage of classification accuracy in order to

get more precise estimates of the next sample. The expression

is formula (3), where Di is sample under consideration, acc(xi)

is classification accuracy of each instance, ǫ is approximation

parameter and δ is probability of failure. And Satyanarayana

[11] uses the formula (4) to check convergence at each

Fig. 4: Learning curves [50].

iteration, where Di is the sample of current iteration and Di−1

is the sample of last iteration.

m ≥
2

1
|Di|

∑Di

i=1 acc(xi)
[
1

ǫ2
log

1

δ
] (3)

|
1

|Di|

Di∑

i=1

acc(xi)−
1

|Di−1|

Di−1∑

i=1

acc(xi)|<ǫ (4)

When sampling is used in machine learning, the most ap-

propriate number of samples is to make the accuracy rate reach

the maximum value and increasing the number of samples can

no longer improve the accuracy of the learning algorithm. The

corresponding figure is Figure 4, where nmin is the minimum

sample size. In this case, there is a method for determining

the minimum number of samples called sequential sampling.

Sequential sampling refers to sample sequentially and stop

sampling until a certain criterion is met. John and Langley [12]

propose a method called Arithmetic Sampling. This method

uses a schedule Sa = (n0, n0 + nδ, n0 + 2nδ, n0 + 3nδ, , N) to

find the minimum sample size, where n0 is the starting sample

size and nδ is fixed interval. Provost et al. [50] think that the

main drawback is that if the minimum size of sample is a large

multiple of nδ, it will take many runs to reach convergence.

Obviously, if nδ is too small, it will take many iterations to

get convergence, and if nδis too large, it may skip the optimal

size of sample.

Singh et al. [13] propose another sequential sampling strat-

egy for classification problem. They mention that data for

training machine learning models typically originates from

computer experiments such as simulations. And computer

simulations are often computationally expensive. In order to

ease the computation pressure, they use sampling to get as

little data as possible. The sequential sampling starts with

an initial small data set Xδ , and it will iteratively increase

the sample by taking training points at well-chosen locations

δ in the input space until stopping criteria is reached. The

sequential sampling strategy chooses a representative set of

data samples that focuses the sampling on those locations

in the input space where the class labels are changing more



6

rapidly, while making sure that no class regions are missed

[13]. The sample update formula is formula (6) where class

labels Yδ obtained by formula (5) are result of simulator

evaluates Xδ . With sequential sampling strategy, small and

high quality samples can be obtained.

Y δ := f(Xδ) (5)

S := S ∪ (Xδ, Y δ) (6)

D. Sampling Error and Sampling Bias

Sampling error is when a randomly chosen sample does

not reflect the underlying population purely by chance and

sampling bias is when the sample is not randomly chosen at

all [51]. Sampling bias is one of the causes of sampling error.

These two are often confused by some scholars. Sampling bias

is caused by the failure of the sampling design, which cannot

truly extract the sample randomly from the population [52].

There is a typical case of sampling error. The large Nurses

Health Study tracked 48,470 postmenopausal women for 10

consecutive years, aged between 30 and 63 years old. The

study concluded that hormone replacement therapy can reduce

the incidence of severe coronary heart disease by nearly

half [53]. Despite the large sample size, the study failed to

recognize the atypical nature of the sample and the confusion

of estrogen therapy with other active health habits [54]. This

also illustrates the importance of proper sampling methods and

the collected samples to get the right conclusions.

To be able to correctly select the samples that represent

the original data, Kim and Wang [55] focus on and solve the

problem of selection bias in the process of sampling. Since

big data is susceptible to selection bias, they propose two

ways to reduce the selection bias. One is based on the inverse

sampling method. This method is divided into two stages. The

first stage is to sample directly from the big data. The sample

is easily affected by the selection bias, thereby it is necessary

to calculate the importance of each element in the sample to

determine selection bias. In the second stage, the data sampled

from the first stage is re-sampled according to the importance

weight of each element. In this way, they have achieved the

goal of realizing the correction of the selection deviation. The

other is the idea of using data integration. They propose to

use the survey data and big data to correct the selection bias

by means of the auxiliary information of survey data.

From the perspective of official statisticians, Tam et al. [56]

believe that big data is challenged by self-selection bias. Self-

selection bias causes biased sample with non-probability sam-

pling. Inferences from big data with this bias will be affected.

Thus, they outline methods for adjusting self-selection bias

to estimate proportions, e.g., using pseudo weights and super

population models [57].

As a matter of fact, the case of 2016 US presidential election

studied in [58] is precisely because of the existence of self-

selection bias, which ultimately leads to data deceiving us.

Therefore, to get the correct conclusion from the data, you

need to ensure the quality of the data. Probability sampling can

guarantee the quality of the data. When probability sampling

cannot be satisfied, the data will be affected by Law of Large

Populations (LLP). The large amount of data N will affect

our estimation error. In summary, when doing data sampling,

data quality must be taken into account, and those high quality

data sets should be given higher weight. This will prevent our

statistical inferences from being affected.

IV. SAMPLING FOR SINGLE COLUMN DATA PROFILING

Single column data profiling tasks are divided into cardinali-

ties, value distributions, patterns, data types, and domains [79].

Table II [16] lists typical metadata that may result from single-

column data profiling. For some single-column data profiling

tasks, such as decimals which calculates maximum number of

decimals in numeric values, simple sampling methods cannot

guarantee reliable results. And for identifying a domain of

one column, it is often more difficult and not fully automated

[80]. Among them, cardinality, histograms and quantiles are

often used for query optimizers, therefore sampling techniques

are more commonly used in these tasks. Specifically, in Sec-

tion IV-A, we introduce sampling for cardinality estimation.

Section IV-B presents sampling for value distribution. More

advanced statistics include the probabilistic correlations on text

attributes [81].

A. Sampling for Cardinality Estimation

Cardinalities or counts of values in a column are the most

basic form of metadata [16]. Cardinalities usually include

number of rows, number of null values and number of distinct

values, which is the most important type of metadata [82].

For some tasks, such as number of rows and number of null

values, a single pass over a column can get the exact result.

However, finding the number of distinct values may require to

sort or hash the value of column [80]. Similarly, when facing

large data sets, statistics of the number of distinct values of an

attribute have to face the pressure of memory and calculation.

Therefore, the estimation of the number of distinct values

based on sampling has been studied [59]–[61].

Haas et al. [59] propose several sampling-based estimators

to estimate the number of different values of an attribute in

a relational database. They use a large number of attribute

value distributions from various actual databases to compare

these new estimators with those in databases and statistical

literature. Their experimental results prove that no estimator

is optimal for all attribute value distributions. And from their

experimental results, it can be seen that the larger the sampling

fraction, the smaller the estimated mean absolute deviation will

be. They therefore propose a sampling-based hybrid estimator

D̂hybrid and get the highest precision on average at a given

sampling fraction.

Similar to Haas et al., Charikar et al. [60] also obtain

a negative result in the experiment that no estimator based

on sampling can guarantee small errors on the input data

of different distributions, unless a larger sampling fraction

is performed on the input data. They therefore propose a

new estimator Guaranteed-Error Estimator (GEE), which is

provably optimal. Although its error on the input of different

distributions is small, it does not make use of the knowledge

of different distributions. For example, in the case of low-skew
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TABLE II: Overview of single-column profiling tasks [16]

Category Task Description

Cardinalities num-rows Number of rows
value length Measurements of value lengths (minimum, maximum, median, and average)
null values Number or percentage of null values
distinct Number of distinct values; sometimes called ”cardinality”
uniqueness Number of distinct values divided by the number of rows

Value distributions histogram Frequency histograms (equi-width, equi-depth, etc.)
constancy Frequency of most frequent value divided by number of rows
quartiles Three points that divide the (numeric) values into four equal groups
first digit Distribution of first digit in numeric values

Patterns, data types, and domains basic type Generic data type, such as numeric, alphabetic, alphanumeric, date, time
data type Concrete DBMS-specific data type, such as varchar, timestamp.
size Maximum number of digits in numeric values
decimals Maximum number of decimals in numeric values
patterns Histogram of value patterns (Aa9...)
data class Semantic, generic data type, such as code, indicator, text, date/time, quantity, identifier
domain Classification of semantic domain, such as credit card, first name, city, phenotype

TABLE III: Summary of sampling for big data profiling tasks

Data Profiling Sampling-based method

Single column Cardinality Estimation D̂hybrid [59], GEE [60], AE [60], Distinct sampling [61]
Histograms Random sampling [62], Backing sample [63]
Quantiles Non-uniform random sampling [64], Improved random sampling [65]

Multiple columns Correlations and association rules Sequential random sampling without replacement [14], Two-phased sampling [4], ISbFIM [66]
Clusters and outliers Biased sampling [67]
Summaries and sketches Error-bounded stratified sampling [68], [69]
Regression analysis IBOSS [70], Random sampling without replacement [71]

Dependency Uniqueness GORDIAN [72], HCA-Gordian [73]
Functional dependencies AID-FD [74], HYFD [75], CORDS [76], BRRSC [77]
Inclusion dependencies FAIDA [78]

data with a large number of distinct values, GEE performs not

very well in practice. They further propose a new heuristic

version of GEE called Adaptive Estimator (AE), which avoids

the problems encountered by GEE.

Different from the previous research using random sam-

pling, Gibbons [61] proposes distinct sampling to accurately

estimate the number of distinct values. Distinct sampling can

collect distinct samples in a single scan of the data, and the

samples can be kept up to date in the state of data deletions

and insertions. On a truly confidential data set Call-center,

distinct sampling uses only 1% of the data, and can achieve a

relative error of 1% -10%, while increasing the speed of report

generation by 2-4 orders of magnitude. They compare distinct

sampling with GEE, AE in the experiment and prove that in

real-world data sets, distinct sampling performs much better

than GEE and AE.

It is worth noting that Harmouch and Naumann [82] conduct

an experimental survey on cardinality estimation. In the experi-

ment, they use the GEE [60] as an example of evaluation. They

perform experiments on synthetic and real-world data sets. It

can be seen from the experimental results that the larger the

sampling fraction, the smaller the average estimation relative

error. And when GEE wants to reach 1% relative error, it needs

to collect more than 90% of the data. In conclusion, when

faced with large data sets, cardinality estimation requires high

memory, and sampling can reduce memory consumption, but

cannot guarantee reasonable accuracy all input distributions.

B. Sampling for Value Distribution

Value distribution is a very important part of single-column

data profiling. Histogram and quantile are two typical forms

used to represent value distribution. The histogram is used

to describe the distribution of data, while quantile refers to

dividing the data into several equal parts.

1) Sampling for Histogram Construction: Many commer-

cial database systems maintain histograms to summarize the

contents of large relations and permit efficient estimation of

query result sizes for use in query optimizers [63]. Histogram

can be used to describe the frequency distribution of attributes

of interest, which groups attributes values into buckets and ap-

proximates true attribute values and their frequencies based on

summary statistics maintained in each bucket [83]. However,

the database is updated frequently, hence the histogram also

needs to be updated accordingly. Recalculating histograms is

expensive and unwise for large relations.

Gibbons et al. [63] propose sampling-based approaches for

incremental maintenance of approximate histograms. They use

a ”backing sample” to update histograms. Backing sample is

a random sample of the relation which is kept up to date

in the presence of databases updates, which is generated by

uniform random sampling. Therefore, random sampling can

help to speed up histogram re-computation. For example, SQL

Server recomputes histograms based on a random sample from

relations [62].

Chaudhuri et al. [62] focus on how much sample is enough

to construct a histogram. They propose a new error metric

called the max error metric for approximate equip-depth
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histogram. The max error metric is formula (7) shown below,

where bj is number of values in bucket j, k is the number

of buckets and n is the number of records. A k-histogram is

said to be a δ-deviant histogram when ∆max ≤ δ. And size

of sample r is calculated as the following formula (8), where

δ ≤ n
k

and γ is predefined probability.

∆max = max
1≤j≤k

|bj −
n

k
| (7)

r ≥
4n2 ln (2n

γ
)

kδ2
(8)

As mentioned above, the histogram can be used to represent

the distribution of data. In exploratory data analysis, analysts

want to find a specific distribution from a large number of

candidate histograms. The traditional approach is ”generate

and test”, i.e., generating all possible histograms, and then

testing whether these histograms meet the requirements. This

approach is undesirable when the data set is large. Therefore,

Macke et al. [84] propose a sampling-based approach to

identify the top k closest histograms called HistSim. The idea

of HistSim is using random sampling method without re-

placement to collect samples for histogram constructing. Then

they normalize the representation vector of the histogram, and

use l1 distance to calculate the similarity. Furthermore, they

propose FastMatch, which combines HistSim and block-based

sampling method, and obtain near-perfect accuracy with up

to 35 speedup over approaches that do not use sampling on

several real-world datasets in the experiment.

2) Sampling for Quantile Finding: Quantiles can be used

to represent the distribution of single column value. Quantiles

are used by query optimizers to provide selectivity estimates

for simple predicates on table values [85]. Calculating exact

quantiles on large data sets is time consuming and requires

a lot of memory. For example, quantile finding algorithm in

[86] requires to store at least N/2 data elements to find the

median, which is memory unacceptable for large-scale data.

Therefore, Manku et al. [64] present a novel non-uniform

random sampling to find approximate quantile. They apply

non-uniform random sampling to reduce memory require-

ments. Non-uniform means that the probability of selecting

each element in the input is different. They set the earlier

elements in the input sequence with larger probability than

those arrive later. And the process of quantile finding is shown

in Figure 5. When the data arrives, they randomly select an

element in each data block and put it into buffers. Then based

on sample, deterministic algorithms are performed to find

quantiles.

However, simply using random sampling method and calcu-

lating the quantiles on the sample may not be accurate enough

on sensor networks. Hence, Huang et al. [65] propose a new

sampling-based quantile computation algorithm for sensor net-

works to reduce the communication cost. To improve accuracy,

they augment the random sample with additional information

about the data. They analyze how to add additional information

to the random sample under the flat model and the tree model.

For example, in the flat model, each node first samples each

data value independently with a certain probability p and

computes its local rank. Then the samples and their local ranks

Fig. 5: Sampling for quantile finding [64].

are sent to base station. The base station estimates rank for

any value it receives and then quantile queries can be solved.

In the end, they prove through experiments that the quantile

computation in Sensor Networks based on this new sampling

method reduces one to two orders of magnitude in terms of the

total communication cost compared with the previous method.

V. SAMPLING FOR MULTIPLE COLUMNS DATA PROFILING

As shown in Figure 1, the content of the multiple columns

data profiling tasks includes association rule mining [87],

clusters and outliers [88], summaries and sketches [16]. Be-

sides, statistical methods such as regression analysis [89] can

be used to perform multiple columns analysis, analyzing the

relationship between these columns. Specifically, in Section

V-A, we investigate sampling for discovering association rules.

Section V-B presents the content of sampling for clusters

and outliers. And sampling for summaries and sketches is

introduced in Section V-C. Then, in Section V-D, we introduce

sampling for helping perform regression analysis.

A. Sampling for Discovering Association Rules

The discovery of association rules is a typical problem in

data profiling for multiple columns. The algorithm currently

used to find association rules needs to scan the database several

times. For large data sets, the time overhead of scanning

several times is hard to accept. Large amount of data leads to

input data, intermediate results and output patterns can be too

large to fit into memory and prevents many algorithms from

executing [66]. Some scholars have proposed using parallel

or distributed methods to solve the problem of data volume

[90], [91]. But it is difficult to design parallel or distributed

algorithms.

Therefore, Zaki et al. [14] use sampling to get samples of

transaction and find the association rules based on the obtained

samples. They take sequential random sampling without re-

placement as their sampling method and use Chernoff bounds
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to obtain sample size. Finally, they experimentally prove that

sampling can speed up the discovery of association rules by

more than an order of magnitude and provide high accuracy

for association rules.

Chen et al. [4] propose a two-phased sampling-based algo-

rithm to discover association rules in large databases. At the

first stage, a large initial sample of transactions is randomly

selected from databases, which is applied to calculate support

of each individual item. And these estimated supports are

used to trim the initial sample to a smaller final sample S0.

At the second stage, association-rule algorithm is performed

against the final sample S0 to get association rules according to

provided minimum support and confidence. In the experiment,

the authors prove 90-95% accuracy obtained using the final

sample S0 and the size of sample is only 15-33% of the whole

databases. This again proves that sampling can be used to

speed up data analysis and big data profiling.

Wu et al. [66] propose an Iterative Sampling based Frequent

Itemset Mining method called ISbFIM. The same as [14], Wu

et al. [66] use random sampling as the sampling method. But

the difference is that they use iterative sampling to get multiple

subsets and find frequent items from these subsets. They can

guarantee that the most frequent patterns for the entire data set

have been enumerated and implement a Map-Reduce version

of ISbFIM to demonstrate its scalability on big data. Because

the volume of input data is reduced, the problem that input

data, intermediate results, or the final frequent items cannot be

loaded into memory is solved. And the traditional exhaustive

search-based algorithms like Apriori can be fitted for big data

context.

B. Sampling for Clustering and Anomaly Detection

Clustering is to segment similar records into the same group

according to certain characteristics, and those records that can-

not be classified into any group may be abnormal points. The

challenge that clustering technology encounters in the era of

big data is also the problem of data volume, and the clustering

operation itself consumes a lot of calculations. Shirkhorshidi et

al. [92] divide big data clustering into two categories: single-

machine clustering and multiple-machine clustering. Single

column reduces the amount of data by using data reduction

methods, e.g., sampling and dimensionality reduction. Multi-

machine clustering refers to the use of parallel distributed

computing frameworks, e.g., MapReduce and cluster resources

to increase computing power.

Kollios et al. [67] propose biased sampling to speed up

clustering and anomaly detection on big data. Unlike the pre-

vious work, they consider the data characteristics and analysis

goals during the sampling process. Based on the tasks of

clustering and anomaly detection, Kollios et al. [67] consider

the data density problem in the dataset. They propose a biased

sampling method to improve the accuracy of clustering and

anomaly detection. The biased sampling is to make the data

points in each cluster and the abnormal points have a higher

probability of being selected. In order to achieve this goal, they

use the density estimation method to estimate density around

the data points. In the experiment, they prove that density-

Fig. 6: Application of biased sampling in clustering tasks [67].

based sampling has a better effect on clustering than uniform

sampling.

Figure 6 shows the use of biased samples in clustering.

Figure 6(a) is the distribution of the original data and there

are three classes with higher density. Figure 6(b) is the result

of random sampling on the original data set. Figure 6(c) is

the result of applying the biased sampling to the original

data. Figure 6(d) shows 10 data points selected from each of

the three categories clustered based on the random sampling,

and Figure 6(e) shows 10 data points selected from each of

the three categories clustered based on the biased sampling

method. After comparison with the categories in the original

data, it is found that the clustering results of the biased samples

are more accurate.

C. Sampling for Summaries and Sketches

Summaries or sketches can be performed by sampling

or hashing data values to a smaller domain [16]. Although

different scholars have applied different sampling algorithms,

the most commonly used sampling algorithm among data

scientists is random sampling [69]. The main reason is that

random sampling is the best and easiest to use, which is the

only technique commonly used by data scientists to quickly

gain insights from big data sets.

Rojas et al. [69] first interview 22 data scientists working

on large data sets and find that they basically use random

sampling or pseudo-random sampling. Certainly, these data

scientists believe that other sampling techniques may achieve

better results than random sampling. These scientists perform

a data exploration task that used different sampling methods to

support classification of more than 2 million generated samples

from data records of Wikipedia article edit. Research has

shown that sampling techniques other than random sampling

can generate insights into the data, which can help focus

on the different characteristics of the data without affecting
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Fig. 7: Sparseness of one representative production data [93].

the quality of data exploration and helping people understand

the data. This shows that with the application of sampling,

Summaries or sketches of data can be created to help scientist

observe and understand the data.

Aggregated queries are also a way to generate summaries of

data. Aggregate queries are computationally expensive which

need to traverse the data. In the era of big data, a single

machine often cannot make such a large amount of data.

Therefore, aggregate queries for big data are often performed

on distributed systems that scales to thousands of machines.

The commonly used distributed computing frameworks are

Hadoop, spark, etc. Although distributed systems provide

tremendous parallelism to improve performance, the process-

ing cost of aggregated queries remains high [68]. Investigation

in one cluster of [68] reveals that 90% of 2,000 data mining

jobs are aggregation queries. These queries consume two-

thousand machine hours on average, and some of them take

up to 10 hours.

Therefore, Yan et al. [68] use sampling technique to re-

duce the amount of data. When error bounds cannot be

compromised and data is sparse, they think that conventional

uniform sampling often yields high sampling rates and thus

deliver limited or no performance gains. For example, uniform

sampling with 20% error bound and 95% confidence needs

to consume 99.91% of the data whose distribution is shown

in Figure 7. Hence, they propose error-bounded stratified

sampling, which is a variant of stratified sampling [93] and

relies on the insight, i.e., prior knowledge of data distribution,

to reduce sample size. Error bound means that the real value

has a large probability of falling within an interval. Sparse data

means that the data is generally limited but wide-ranging.

Taking the data distribution in Figure 7 as an example,

error-bounded stratified sampling can divide the data into two

groups. One group covers the header data and the other covers

the tail data. Because the data range of the first group is small,

the sampling rate is also small. Although the data range of the

second group is large, the data basically falls in the first group.

Even if the data of the second group is all taken as a sample,

the overall sampling rate is still low. It is worth mentioning that

the technique has been implemented into Microsoft internal

search query platform.

D. Sampling for Regression Analysis

Statistical analysis such as regression analysis can be used

to analyze the relationship between multiple columns in a

relation. Sauter [94] think that statistics are learned from data.

Statistics methods are often used for data profiling, which have

encountered the problem of excessive data volume in the era of

big data. Statistical analysis of the entire big data set requires

a certain amount of calculation and time.

Under the computational pressure of large data sets, many

traditional statistical methods are no longer applicable. Al-

though sampling can help with data reduction, how to avoid

sampling errors caused by sampling needs to be considered.

For example, [70] mention that in the context of linear

regression, traditional sub-sampling methods are prone to

introduce sampling errors and affect the covariance matrix of

the estimator. Hence, they propose information-based optimal

subdata selection method called IBOSS. The goal of IBOSS

is to select data points that are informative so that small-

sized subdata retains most of the information contained in the

complete data. Simulation experiments prove that IBOSS is

faster and suitable for distributed parallel computing.

Jun et al. [71] propose to use sampling to divide big data

into some sub data sets in regression problem for reducing the

computing burden. The traditional statistical analysis of big

data is to sample from big data, and then perform statistical

analysis on the sample to infer the population. Jun et al. [71]

divide the big data closed to population into some sub data

sets with small size closed to sample which is proper for big

data analysis. They treat the entire data set as a population

and the sub set as a sample to reduce computing burden. And

they select regression analysis to perform experiments. The

traditional processing is shown in Figure 8, and their design

is shown in Figure 9.

Their design consists of three steps: the first step is to

first generate M sub-data sets using random samples without

replacement; the second step is to calculate the regression

parameters of each sub-data set and calculate the average

of regression parameters of the M sub-data sets; the third

step is to use the averaged parameters obtained in the second

step to estimate regression parameters on the entire data set.

This design that combines sampling and parallel processing

helps them speed up regression analysis on big data. By

experimenting with the data set from the simulation and UCI

machine learning repository, the author proves that the regres-

sion parameters obtained by distributed calculation on random

samples are close to the regression parameters calculated on

entire data set. This provides a reference for statistical analysis

on the entire large data set.

VI. SAMPLING FOR DEPENDENCIES

A dependency is a metadata that describes the relationship

between columns in relation, based on either value equality

or similarity [95]. There are many use cases for dependencies.

For example, unique column combinations are used for finding

key attributes in relation [72], and functional dependencies

can be used for schema normalization [96] or consistent query

answering [97], while inclusion dependencies can suggest how
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Fig. 8: Traditional big data regression analysis [71].

Fig. 9: Sampling-based partitioning big data regression anal-

ysis [71].

to join two relations [16]. Inclusion dependencies together

with functional dependencies form the most important data

dependencies used in practice [98]. But discovery of depen-

dencies is time consuming and memory consuming. Many

functional dependencies discovery algorithms are not suitable

for large data sets. Sampling could be employed to estimate

the support and confidence measures of data dependencies

[99], [100]. By sampling, you can select a small enough

representative data set from the big data set. Hence, the choice

of sampling method is very important, which help to ensure

that the estimated inaccuracy rate is below a predefined bound

with high confidence. Specifically, based on the classification

for dependency in [16], we investigate sampling for unique

column combinations in Section VI-A, functional dependency

in Section VI-B, inclusion dependency in Section VI-C.

A. Sampling for Discovery of Unique Column Combinations

An important goal in data profiling is to find the right key

for the relational table, e.g., primary key. The step before

key discovery is to discover unique column combinations.

Unique column combinations are sets of columns whose

values uniquely identify rows, which is an important data

profiling task [101]. But discovery of unique column combina-

tions is computationally expensive, which is suitable for small

dataset or samples of large dataset. For large data set, sampling

is a promising method for knowledge discovery [102]. Based

on sampling-based knowledge discovery, it is necessary to first

select samples from the entire data set and obtain knowledge

from the samples, and then use the entire data set to verify

that the acquired knowledge is correct.

A typical algorithm for identifying key attributes is GOR-

DIAN proposed by Sismanis et al. [72]. The main idea of

GORDIAN is to turn the problem of keys identification into

cube computation problem, and then find non-keys through

cube computation. Finally, GORDIAN calculates the comple-

ment of the non-keys set to obtain the desired set of keys.

Therefore, the GORDIAN algorithm can be divided into three

steps: (i) create the prefix tree through a single pass over the

data; (ii) find maximal non-uniques by traversing the prefix

tree with prunning; (iii) get minimal keys from set of maximal

non-uniques. In order to make GORDIAN scalable to large

datasets, Sismanis et al. combine GORDIAN with sampling.

Experiments have shown that sampling-based GORDIAN can

find all true keys and approximate keys using only a relatively

small number of samples.

GORDIAN algorithm is further developed by Abedjan and

Naumann [73] to discover unique column combinations. Since

the existing algorithms are either too violent or have high

memory requirements and cannot be applied to big data sets.

A hybrid solution HCA-Gordian, which combines Gordian

algorithm [72] and their new algorithm the Histogram-Count-

based Apriori Algorithm (HCA), is proposed by Abedjan and

Naumann [73] to discover unique column combinations. GOR-

DIAN algorithm is used to find composite keys and the HCA

is an optimized bottom-up algorithm which takes efficient can-

didate generation and statistics-based pruning methods. HCA-

Gordian performs Gordian algorithm on a smaller sample of

table to discover non-uniques and non-uniques will be used as

pruning candidates when executing HCA on the entire table.

In the experiment setup, the sample size for the prepro-

cessing step of non-unique discover is always 10,000 tuple

sample. Especially when the amount of data is large and the

number of unique is small, the runtime of HCA-Gordian is

lower than Gordian. For example, when using real world tables

for experiments, search speed of HCA-Gordian is four times

faster than Gordian. And as the data set grows larger, e.g.,

the National file contains 1,394,725 tuples, Gordian takes too

long to run, while HCA-Gordian only takes 115 seconds to

complete. In addition, When the number of detected non-

uniques is high, the discovery effect of HCA-Gordian is better

than Gordian.

B. Sampling for Functional Dependencies

A functional dependency refers to a set of attributes in

a relationship that determines another set of attributes. For

example, there is such a functional dependency A-¿B, which

means that any two records in the relationship, when their

values on the attribute set A are equal, the values on the

attribute set B must be equal. Bleifuss et al. [74] propose an

approximate discovery strategy AID-FD (Approximate Itera-

tive Discovery of FDs) which sacrifices a certain correct rate

in exchange for performance improvement. AID-FD uses an

incremental, focused sampling of tuple pairs to deduce non-

FDs until user-configured termination criterion is met. The

authors have demonstrated in experiments that the AID-FD
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method uses only 2%-40% of the time of the exact algorithm

when processing the same data set, but finds more than 99%

of the functional dependencies.

Papenbrock and Naumann [75] mention that today’s various

functional dependencies discovery algorithms do not have the

ability to process more than 50 columns and 1 million rows

of data. Thus, they propose the sampling-based FD discovery

algorithm HYFD. And there are three properties in sampling-

based FD discovery algorithms: Completeness, Minimality,

Proximity, which are important for HYFD. HYFD combines

column-efficient FD induction techniques with row-efficient

FD search techniques in two phases. In Phase 1, they apply

focused sampling techniques to select samples with a possibly

large impact on the results precision and produce a set of

FD candidates based on samples. In Phase 2, the algorithm

applies row-efficient FD search techniques to validate the FD

candidates produced in Phase 1. The sampling method allows

functional dependencies discovery algorithms to be extended

to large data sets.

In experiments, when the data set is not very large, the run-

time of HYFD is almost all lower than other algorithms. When

the data set exceeds 50 columns and 10 million rows, HYFD

can get the result through a few days of calculation. However,

other algorithms cannot complete the calculation, because the

time complexity for these algorithms is exponential. This again

demonstrates that sampling is important for data profiling, e.g.,

FD discovery.

In the above, we mention that using focused sampling to find

functional dependencies. In this section, we will mention the

use of random sampling to find soft functional dependencies.

The so-called ”soft” functional dependency is relative to the

”hard” functional dependency. A ”hard” functional depen-

dency means that the entire relationship satisfies the functional

dependency, while a ”soft” functional dependency means that

the entire relationship is almost satisfied, or that there is a high

probability of satisfying the functional dependency.

Ilyas et al. [76] propose sampling-based CORDS, which

means that automatic discovery of correlations and soft func-

tional dependencies between columns, to find approximate

dependencies. Among them, correlation refers to the general

statistical dependence, while soft functional dependence refers

to that value of attribute C1 determines the value of attribute

C2 with high probability. CORDS use enumeration to generate

pairs of columns that may be associated, and heuristically cuts

out those unrelated column pairs with high probable. CORDS

apply random sampling with replacement to generate sample.

In the implementation of CORDS, they only use a few hundred

rows of sample data, and the sample size is independent of

the data size. In the experiment to evaluate the advantages of

applying CORDS, where run a workload of 300 queries on

the Accidents database, the median query execution time and

worst query execution time with CORDS applied were better

than those without CORDS. Hence, CORDS is efficient and

scalable when it encounters large-scale dataset.

Approximate functional dependence is similar to the mean-

ing of soft functional dependency. Approximate functional

dependence requires the normal functional dependency to be

satisfied by most tuples of relation R [103], [104]. Of course,

approximation functional dependencies contain exact func-

tional dependencies that are satisfied throughout the relation-

ship. As mentioned in [103], when the amount of data is large,

the time for discovery of functional dependency will increase

exponentially. Therefore, Kivinen and Mannila [103] propose

to discover approximate dependencies by random sampling.

In fact, sampling can be used not only to find approximate

functional dependencies, but also to verify exact functional

dependencies [104]. If the exact functional dependency does

not satisfy all the sample data, then the whole relationship

is definitely not satisfied, hence such functional dependencies

can be removed.

Functional dependencies are satisfied for all tuples in the re-

lation, while conditional functional dependencies (CFDs) is to

hold on the subset of tuples that satisfies some patterns [105].

And CFDs can be used for data cleaning [105], [106]. Fan

et al. [107] propose three methods for conditional functional

dependencies discovery. However, when the size of data set is

large, no dependency discovery algorithms scale very well to

discover minimal conditional functional dependencies.

When mining CFDs on big data, the volume issue of big

data has to be solved. Li et al. [77] develop the sampling

algorithms to obtain a small representative training set from

large and low-quality datasets and discover CFDs on the

samples. They use sampling technology for two reasons. One

is that finding CFD needs to scan the data set multiple times,

and sampling helps reduce the amount of data. The second

is to use the sampling method to help them filter those dirty

items on the low-quality data set and choose clean items as the

training set. They define criteria for misleading tuples, which

are dirty, incomplete or very similar to popular tuples. And

then they design a Representative and Random Sampling for

CFDs (BRRSC), which is similar to reservoir sampling [43].

The difference is that they combine the criteria defined above

during the sampling process. Furthermore, they propose fault-

tolerant CFDs discovery and conflict-resolution algorithms

to find CFDs. Finally, experimental results show that their

sampling-based CFD discovery algorithms can find valid CFD

rules for billions of data in a reasonable time.

C. Sampling-based Test for Inclusion Dependency Candidates

The definition of inclusion dependencies (INDs) is that

the combination of values that appear in a set of attribute

columns must also appear in another set of attribute columns

[108]. Therefore, inclusion dependencies are often used to

discover foreign keys [98]. However, discovery of inclusion

dependencies is computationally expensive. One of the reasons

is that the existing algorithms need to shuffle huge amounts

of data to test inclusion dependencies candidates, which puts

pressure on both computing and memory [78].

Under these circumstances, Kruse et al. [78] propose fast

approximate discovery of inclusion dependencies (FAIDA).

FAIDA can guarantee to find all INDs and only false positives

with a low probability in order to balance efficiency and cor-

rectness. FAIDA uses algorithms [109], [110] of Apriori-style

to generate inclusion dependencies candidates. The inverted

index values and operates on a small sample of the input data.
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The sampling algorithm is applied to each table to get each

sample. Rather than use random sampling to get sample, they

assure that sample table contains min {s, dA} distinct values

for each column A, where s represents sample size and dA

represents number of distinct values in column A.

In their experiments, they set sample size to a default of

500. In order to verify the efficiency of FAIDA, Kruse et

al. [78] compare FAIDA’s runtime with the state-of-the-art

algorithm for exact IND discovery BINDER [110] on multiple

datasets. On four datasets, FAIDA is steadily 5 to 6 times

faster than BINDER, and they generate and test almost the

same number of IND candidates. Especially when one of

the datasets reaches 79.4GB, BINDER takes 9 hours and 32

minutes to complete, while FAIDA only takes 1 hour and 47

minutes. Their evaluation shows that sampling-based FAIDA

outperforms the state-of-the-art algorithm by a factor of up to

six in terms of runtime without reporting any false positives.

VII. SUMMARY AND FUTURE WORKS

Data in various fields are increasing on a large scale. Big

data brings us new opportunities and challenges. Through

data analysis and data mining of big data, we can get a

lot of potential value. However, due to the large amount

of data, it brings great challenges to the processing and

storage. Therefore, data analysis, data mining or data profiling

on large data sets have to face the pressure of calculation

and time. Increasing computing power by using clusters of

computers is one solution, but many times this is not the case,

and designing distributed computing is often difficult. Hence,

the application of data reduction techniques like sampling is

very important. There are some mature research articles on

data profiling and sampling, while little attention is paid to

sampling and profiling over big data, therefore this article

focuses on researching sampling and profiling in big data

context. We first give a brief introduction of data profiling

and introduce some important factors of sampling in detail.

Then, according to the classification of data profiling in [16],

we introduce the application of sampling in single column

data profiling, multiple columns data profiling and dependency

discovery. In conclusion, Table III summarizes the sampling

for data profiling tasks investigated in survey, indicating the

widespread use of sampling in data profiling.

The above survey on “sampling and profiling over big

data” is mainly about relational databases, and rarely involves

graph data or time series data. Since there is less research

on sampling-based data profiling for graph data or time series

data, we provide some future directions as follows.

A. Sampling for Profiling Time Series Data

Many tasks on time series data need data profiling, e.g.,

matching heterogeneous events in a sequence [111], [112]

with profiled patterns [113], [114], cleaning time series data

[115] under speed constraints [22], or repairing timestamps

according to the given temporal constraints [116] such as

sequential dependencies [117]. All these studies use data

profiling to detect and repair erroneous temporal data. The

computational cost and time cost in large-scale temporal data

streams can be high. Therefore, sampling for profiling time

series data is valuable and necessary.

In the time series data stream, we do not need to get

exact results, e.g., when calculating the quantiles or probability

distributions of speeds. Approximate results are valuable in

time-series data streams, for example approximate probability

distributions of speeds can also help us perform effective

anomaly detection. In the sampling of time series data, sta-

tistical probability distributions of speeds are different from

discovering quantiles. The speed of time series data depends

on the adjacent time-series data points, which means that

sampling for calculating speed of time series requires a set of

data points in a window. Therefore, how to apply the sampling

technology to the aforesaid data profiling task of time series

data needs further experimental analysis and research.

B. Sampling for Profiling Graph Data

Data profiling is also heavily used in graph data, e.g., using

Petri Nets in process mining to recover missing events [118],

[119] and clean event data [120], discovering keys for graphs

and applying keys to study entity matching [121], or defining

functional dependencies for graphs [25] and discovering them

[122]. However, the above studies still seem to be difficult

when encountering large graphs. Fan et al. [121] prove that

entity matching is NP-complete for graphs and recursively

defined keys for graphs bring more challenges. In this case,

one has to design two parallel scalable algorithms, in MapRe-

duce and a vertex-centric asynchronous model. In order to

find Graph Functional Dependencies, Fan et al. [122] have

to deal with large-scale graphs by designing effective pruning

strategies, using parallel algorithms, and adding processors. As

mentioned earlier, designing parallel algorithms is difficult.

Equivalently, profiling for graph data has to face the pressure

of computing and memory when data profiling encounters

large graphs. Therefore, it is necessary and worth researching

to sample the graph data and carry out the tasks of data

profiling based on the sample. But sampling graph data is more

difficult than sampling relational data. Leskovec and Faloutsos

[41] did practical experiments on sampling from large graphs.

They concluded that best performing methods are the ones

based on random-walks and ”forest fire”, with sample sizes as

low as 15% of the original graph. However, how to apply these

graph sampling methods to the above-mentioned graph data-

based data profiling tasks is waiting for further experiments

and exploration.

C. Sampling for Profiling Heterogeneous Data

Data profiling is also widely used for heterogeneous data,

e.g., discovering matching dependencies (MDs) [123], [124],

reasoning about matching rules [125], [126], discovering a

concise set of matching keys [127] and conditional matching

dependencies (CMDs) [128]. However, these profiling tasks

also have to face computational pressure in a big data context.

In fact, MDs, DDs and data dependencies are all based

on differential functions. When calculating the measures for

differential dependencies, performing sampling of pairwise

comparison is more difficult. Given an instance of relation
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R with N data tuples, pairwise comparison M will increase

the total number to
N∗(N−1)

2 , which will greatly increase

the number of populations. However, many pairs in M are

meaningless when calculating support for DDs [129], which

means that the proportion of pairs we want is very small.

Therefore, we must increase the sampling rate to expect to

include these pairs in the sample, so as to get the approximate

results as close as possible.
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