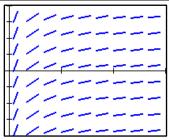
7.4 Reasoning Using Slope Fields

The slope field from a certain differential equation is shown for each problem. The multiple choice answers are either differential equations OR a specific solution to that differential equation.

1.



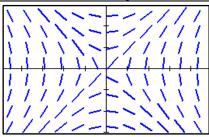
(D)
$$y = \cos x$$

(B)
$$y = e^x$$

(E)
$$y = x^2$$

(C)
$$y = e^{-x}$$

2.



(A)
$$\frac{dy}{dx} = x + y$$

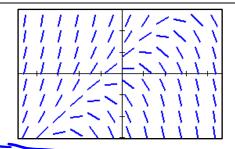
$$(D) \frac{dy}{dx} = (x - 1)y$$

(B)
$$\frac{dy}{dx} = \frac{x}{y}$$

$$(E) \frac{dy}{dx} = x(y-1)$$

(C)
$$\frac{dy}{dx} = \frac{y}{x}$$

3.



$$(A) \frac{dy}{dx} = y - x$$

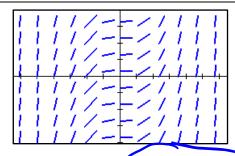
(D)
$$\frac{dy}{dx} = y(x - 1)$$

(B)
$$\frac{dy}{dx} = -\frac{x}{y}$$

(E)
$$\frac{dy}{dx} = x(y-1)$$

(C)
$$\frac{dy}{dx} = -\frac{y}{x}$$

4.



(A)
$$y = \sin x$$

(D)
$$y = \frac{1}{6}x^3$$

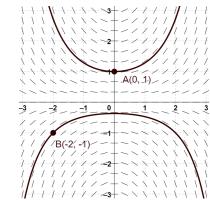
(B)
$$y = \cos x$$

(E)
$$y = \frac{1}{4}x^4$$

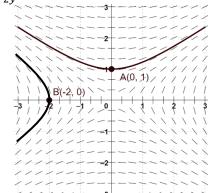
(C)
$$y = x^2$$

For each slope field, plot and label the points A and B and sketch the particular solution that passes through each of those points. (Two separate solutions for each slope field.)

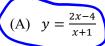
 $5. \quad \frac{dy}{dx} = \frac{xy}{2}$

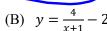


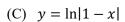
Point A: (0, 1) Point B: (-2, -1)



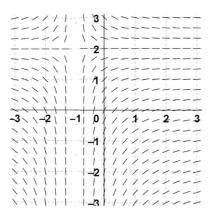
Point A: (0, 1) Point B: (-2, 0) 7. The slope field for a certain differential equation is shown. Which of the following could be a solution to the differential equation with initial condition y(2) = 0?







(D)
$$y = \frac{3x^2}{x+1} - 6$$



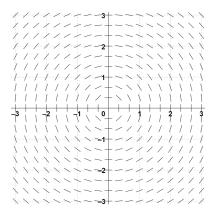
8. The slope field for a certain differential equation is shown. Which of the following could be a solution to the differential equation with the initial condition y(0) = 1?

$$(A) \quad y = \frac{x}{y} + 1$$

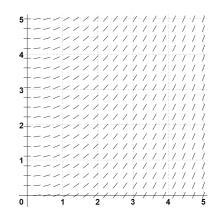
$$(B) \quad y = -\frac{x}{y} + 1$$

(C)
$$x^2 + (y+1)^2 = 4$$

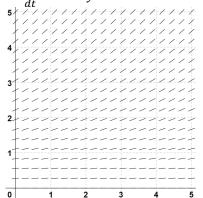
(D)
$$x^2 + y^2 = 1$$



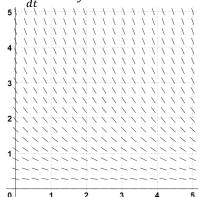
- For each problem below a slope field and a differential equation are given. Explain why the slope field CANNOT represent the differential equation.
- $9. \ \frac{dy}{dt} = 0.5y$



 $10. \frac{dy}{dt} = -0.2y$



11. $\frac{dy}{dx} = 0.6y$



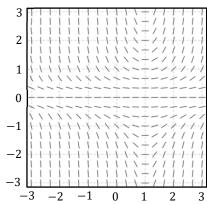
- One possible answer: When y = 0, $\frac{dy}{dt} = 0$. However, in the slope field, the slopes of the line segments for y = 0 are nonzero.
- $\frac{dy}{dx}$ < 0 when y > 0, but the slope field shows line segments with positive slope.
- $\frac{dy}{dx}$ > 0 when y > 0, but the slope field shows line segments with negative slope.

Consider the differential equation and its slope field. Describe all points in the xy-plane that match the given condition.

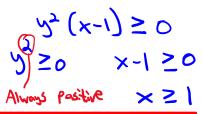
 $\frac{dy}{dy} = 2y + 4x - 1$ 12. When is $\frac{dy}{dx}$ is positive?

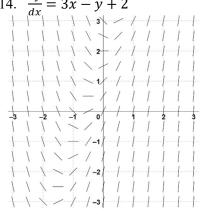
2y+4x-1>0 27>-4x+1 ソ>-2x+な All points that make

13. $\frac{dy}{dx} = y^2(x-1)$



When are the slopes nonnegative?



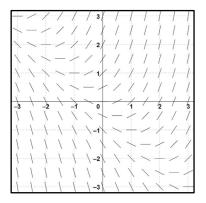


When does $\frac{dy}{dx} = 1$?

7.4 Reasoning Using Slope Fields

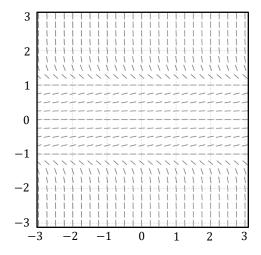
Test Prep

15.



The slope field for a certain differential equation is shown above. Which of the following statements about a solution y = f(x) to the differential equation must be false?

- The graph of the particular solution that satisfies f(2) = -2 has a relative minimum at x = 2.
- The graph of the particular solution that satisfies f(-1) = -1 is concave up on the interval -2 < x < 1. (B)
- The graph of the particular solution that satisfies f(1) = -2 is linear. (C)
- The graph of the particular solution that satisfies f(-1) = 2 is concave up on the interval -3 < x < 3. (D)

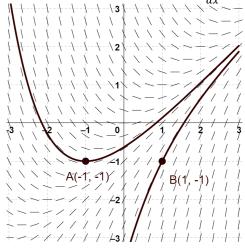


Shown above is a slope field for the differential equation $\frac{dy}{dx} = y^2(1 - y^2)$. If y = f(x) is the solution to the differential equation with initial condition f(1) = 2, then $\lim_{x \to \infty} f(x)$ is

- $(A) -\infty$
- (B) -1
- (C) 0

(E) ∞

17. The figure below shows the slope field for the differential equation $\frac{dy}{dx} = x - y$



- a. Sketch the graph of a particular solution that contains (-1, -1). Label this point as Point A.
- b. Sketch the graph of a particular solution that contains (1, -1). Label this point as Point B.
- c. State a point where $\frac{dy}{dx} = 0$. Find $\frac{d^2y}{dx^2}$ and use it to verify if your point is a max or min.

Answers will vary. One example is the point (1,1). Because $\frac{d^2y}{dx^2} > 0$ because the slope field shows a concave up graph. Because $\frac{dy}{dx} = 0$ as well, this point represents a minimum.