
State of Open Source
Security Report
2020

Table of contents

The open source universe 9

Ecosystem growth 10

The security implications of open source development 12

Addressing infrastructure and
container security risk 31

Security in Linux distributions 32

Guest commentary: Red Hat 33

Docker images 34

Kubernetes security 36

Helm security 38

Detailed open source
vulnerability analysis 14

High-level vulnerability trends 15

Spotlight: What’s old is new again 19

Vulnerability impacts in 2019 20

Spotlight: Snyk discovers prototype pollution in Lodash 24

Ecosystem vulnerability analysis 25

Security and vulnerability
management practices 39

Security as a culture 40

Guest analysis: CircleCI 42

Spotlight: Creating a culture of shared security
responsibility at Segment 44

Evaluating package health 45

Container image health 46

Security practices 47

Vulnerability remediation 50

Maintainer security performance 53

1

2

3

4

Introduction 3

Key takeaways and trends 4

About out survey 5

Report conclusions & recommendations 55

All rights reserved. 2020 © Snyk 3

Introduction

The use of open source software has become almost

ubiquitous in the software development community.

Development ecosystems have grown in their dependence

on third-party libraries and packages to streamline

development. Awareness of how the increased prevalence

of open source software impacts the security posture of

enterprise organizations appears to be growing as well. For

their part, the open source community is responding. In

November of 2019, GitHub (acquired in 2018 by Microsoft)

announced the launch of the GitHub Security Lab with free

access to its CodeQL code review tool and the opening of its

Advisory database to public access.

However, the question remains—is this increased awareness

translating into improved security and practices related

to the use of open source software? As part of our annual

report on the state of open source security—and our desire

to help the development community leverage open source

securely—we sought to answer many of these questions.

Once again, this year we gathered information from a few

key sources including the following:

 à A survey created and distributed by Snyk and our

partners that was completed by over 500 developers,

security practitioners, and operations technologists.

 à Internal data from the Snyk vulnerability database,

as well as correlated data from the hundreds of

thousands of projects currently monitored and

protected by Snyk.

 à Research and data published by various sources that

include aggregated data from scanning the millions of

repositories in GitHub, GitLab, Bitbucket, and others.

Through our analysis, Snyk was able to identify some key

themes and trends that shed new light on the current state

of security across open source ecosystems. Let’s begin by

looking at some of those.

4All rights reserved. 2020 © Snyk

Key takeaways and trends

 Open source universe

 à Open source ecosystems continue

to expand, led by npm which grew

over 33% in 2019, now spanning over

1,300,000 packages to this date.

 à The majority of open source

vulnerabilities continue to be

discovered in indirect

dependencies:

◊ npm - 86%
◊ Ruby - 81%
◊ Java - 74%

 Container & orchestration
 challenges

 à Official base images tagged as latest

include known vulnerabilities.

 à Over 30% of survey participants do

not review Kubernetes manifests

for insecure configurations.

 à Requirements for security-related

resource controls in Kubernetes are

not widely implemented.

 Vulnerability trends

 à New vulnerabilities were down

almost 20% across the most

popular ecosystems in 2019.

 à Cross-site scripting vulnerabilities

were the most commonly reported.

 à Two prevalent prototype pollution

vulnerabilities resulted in an impact

on over 25% of scanned projects.

 à New vulnerabilities reported

in common Linux distributions

demonstrate the need for

comprehensive monitoring for new

vulnerabilities in container images.

 à SQL Injection vulnerabilities,

while decreasing in prevalence in

most ecosystems, have increased

over the last three years in

PHP packages.

 Security culture

 à Increasingly, survey respondents feel that security for software and infrastructure should be

shared among development, security, and operations roles.

 à However, few organizations have programs in place to develop shared responsibility across

the Dev, Sec, and Ops personnel.



 

All rights reserved. 2020 © Snyk 5

A word about our survey

In an effort to gain additional perspectives on the data

we researched regarding open source software, we

reached out to the community at large. Over the course

of several months, we surveyed over 500 industry

professionals to ask about their use and maintenance of

open source packages in their software, as well as cloud

native technologies. Throughout this report, we reference

various findings from that survey.

However, to put those findings into perspective, it is

important to understand the survey itself better. The

survey was made available via social media, a number of

select partners, and direct outreach to communities in

software development and security. Respondents were not

scientifically chosen so, there may be biases in some of the

results that need to be considered.

For instance, we asked each respondent what their

primary role was. Maybe not too surprising, 66% work

in software development. Responses from Security and

Infrastructure/Operations personnel amounted to a

combined 29.4%. So, while we were able to gain important

security and operations perspectives, the final results will

be slanted toward the view of software developers.

13%

5%

16%

66%

Survey participants job responsibilities

Other

Infrastructure/Operations

Security

Software Development

Other

Infrastructure/Operations

Security

Software Development

All rights reserved. 2020 © Snyk 6

We also wanted to understand the relative position

of our participants within their organization.

We asked the respondents to identify what best

described their role in terms of general titles. The

response set was weighted more heavily toward

individual contributors than leadership.

Survey participants - job role

Developer29%

Engineer25%

Architect19%

Executive Leader7%

Senior Leader7%

Analyst4%
Project Manager3%
First-Level Manager2%
Other4%

All rights reserved. 2020 © Snyk 7

Understanding what industries are providing their perspectives is also crucial, see below the

breakdown of the top five industries represented in our report. You can see that Technology

and Financial Services were the most highly represented.

Response by top 5 industries

0

30%

GovernmentTechnology Financial Services

10%

20%

40%

Healthcare

33%

19%

9%

5%

Education

4%

All rights reserved. 2020 © Snyk 8

Finally, we believe it is important to understand

the size of the organizations that our participants

represented. While there was significant influence

from small organizations or individuals in our response

set, the remaining participants provided pretty equal

representation across organizational sizes.

Organization size

41%

23%

6%

11%

19%

5000+

1000-5000

500-900

100-499

1-100

1The open source universe

The trend of incredible growth in the use and contribution of open source software

across various software development ecosystems continued in 2019. In the State of the

Octoverse report, GitHub reported that over 10 million new users joined GitHub last

year bringing the total number of developers on that platform to over 40 Million.

All rights reserved. 2020 © Snyk 10

Ecosystem growth

Our research across multiple ecosystems and repositories was consistent with

the overall growth trends seen across the open source community. In terms of

development ecosystems, we continued to track the progress of five of the most

common open source ecosystems.

The growth in open source packages is driven largely by the continued

popularity and growth of the JavaScript ecosystem. Conversely, fewer new

packages were created for Java and Ruby than in the previous year. Overall,

across these five ecosystems, the total number of packages grew significantly.

In particular, npm grew by over 33% from the end of 2018 to the end of 2019.

New packages created by ecosystem per year

0

100k

200k

300k

400k

2015 2016 2017 2018 2019

Rubygems

PyPI

NuGet

npm

Maven Central

0

100k

200k

300k

400k

2015 2016 2017 2018 2019

Rubygems

PyPI

NuGet

npm

Maven Central

All rights reserved. 2020 © Snyk 11

The growth in JavaScript and Node.js packages is

consistent with the responses we received from

our survey participants regarding the ecosystems

they use. Over 70% of the participants said they

use Node.js/JavaScript as a primary development

ecosystem in their organization.

Rust
5%

Ruby
13%

Node.js or
Javascript

73%

.Net
26%

Java or other
JVM language

62%

Other
25%

Go
27%

Python
55%

PHP
29%

All rights reserved. 2020 © Snyk 12

The security implications of open source development

A key risk factor when organizations consider the

security of their open source software utilization,

centers around the idea of maintaining a Software

Bill of Materials. Organizations are challenged

with understanding what open source libraries

and packages are included in the software they

produce. This challenge comes from the difficulty

in understanding not only the direct open source

dependencies defined in their code but the indirect

dependencies that are introduced as a result.

In our survey, we asked the participants about their

ability to track open source dependencies in their

software. Over 60% said they do not have a good

view into the full dependency trees of their software.

As a result, it would be extremely difficult to identify

if a newly discovered vulnerability in an open source

package affects their code or not.

How do you track open source dependencies?

?

28%
Strong controls and

confidence of all
dependencies

33%
Direct dependencies, but

struggle with indirect

7%
I don't know

32%
We don't have
good controls

60% of organizations surveyed do

not fully inventory the dependency

trees in their software

All rights reserved. 2020 © Snyk 13

When you consider this information in light of the

growth and wide-spread use of ecosystems like

Node.js, the risk that open source development

poses to organizations becomes all too real. Each

year we analyze the vulnerabilities that Snyk has

identified in hundreds of thousands of projects. We

continue to find that the majority of Node.js, Java,

and Ruby vulnerabilities identified are introduced

via indirect dependencies.

Vulnerabilities from direct versus indirect dependencies

IndirectDirect

Over 70% of vulnerabilities

discovered in Node.js, Java

and Ruby are found in indirect

dependencies

0%

25%

50%

75%

100%

npmPyPI RubyGemsMaven
Central

PHP
Packagist

11%

89%

27%

73% 14%26% 19%

74% 81% 86%

2Detailed open source
vulnerability analysis

What would any discussion of the state of open source security be without taking a

look at the vulnerabilities being discovered and disclosed in open source packages and

libraries? This year we are taking an even deeper look at vulnerability and ecosystem-

level trends that affect the overall security posture of the open source community.

All rights reserved. 2020 © Snyk 15

High-level vulnerability trends

In past years, we have seen that in terms of total

vulnerabilities identified in open source packages

across the ecosystems, Node.js and Java have

traditionally shown the greatest number of new

vulnerabilities each year. That trend continued in

2019, perhaps—at least to some extent—due to

the relative popularity of those ecosystems. One

potentially encouraging sign is that across all six

popular ecosystems we looked at, there were fewer

new vulnerabilities reported in 2019 than in 2018.

While one year is hardly enough data to draw a

significant conclusion if this trend continues, it could

be a positive sign that efforts to improve the security

of open source software are starting to pay off.

Vulnerabilities identified in ecosystems since 2014

0

100

200

2014 2015 2016 2017 2018

500

2019

300

400

PHP Packagist

PyPI

NuGet

npm

Maven Central

PHP Packagist

PyPI

NuGet

npm

Maven Central

PHP Packagist

PyPI

NuGet

npm

Maven Central

PHP Packagist

PyPI

NuGet

npm

Maven Central

PHP Packagist

PyPI

NuGet

npm

Maven Central

All rights reserved. 2020 © Snyk 16

Unfortunately, not all the high-level analysis of

vulnerabilities in the open source ecosystems paints

the same optimistic picture. It is good to see that the

number of new vulnerabilities disclosed this year in

those popular ecosystems went down. However, the

overall number of vulnerabilities reported across all

ecosystems increased in 2019 after having shown a

decrease in 2018. Compounding that concern is that,

once again in 2019, the majority of the vulnerabilities

identified were considered high severity.

Note: One may notice that our numbers for

previous years do not match the numbers

presented in last year’s report. Those

discrepancies are due to vulnerabilities that

were reported but not confirmed until after

the end of the year, new or additional sources

of vulnerability data we included to our

vulnerability database, as well as the addition of

new ecosystems to our vulnerability database.

Vulnerability severities by year

0

250

500

750

1000

201820172016

38

441

324

67

760

103

1126

1388

826

2019

107

919

1002

1250

1500

HighMediumLow

All rights reserved. 2020 © Snyk 17

Looking at the numbers of new vulnerabilities,

it is easy to assume that the discovery of new

attack vectors is behind the large number of new

vulnerabilities reported. However, a deeper analysis

of the vulnerabilities shows that is simply not the

case. We analyzed the types of vulnerabilities that

have been reported in open source software dating

back to 2014. The data shows that well-understood

vulnerabilities continue to contribute significantly to

the totals. For instance, cross-site scripting — which

has been a category on every OWASP Top 10 list

since the very first list was created in 2003—is the

most common vulnerability discovered since 2014

and, year over year, it is in the top 3 of

reported vulnerabilities.

Top vulnerabilities since 2014

12501000

1042

0 500 750250

623

619

307

221

460

465

240

227

Code Execution

XSS

Denial-of-Service

Directory Traversal

Malicious Packages

Information Exposure

Access Restriction
Bypass

CSRF

XXE

Authentication Bypass 134

2018

2017

2016

2015

2014

2019

2018

2017

2016

2015

2014

2019

2018

2017

2016

2015

2014

2019

2018

2017

2016

2015

2014

2019

2018

2017

2016

2015

2014

2019

2018

2017

2016

2015

2014

2019

All rights reserved. 2020 © Snyk 18

Given the number of controls and frameworks

available in the various ecosystems to prevent

exactly these types of attacks, it is somewhat

concerning that these numbers continue to

progress in this way. The introduction of Content

Security Policies (CSP) is one of the latest attempts

to thwart these types of attacks. However, based on

the current vulnerability trends, it is clear that more

work needs to be done. In the end, it is up to the

developer to implement proper validation, while

it is incumbent upon security professionals to

help enable the discovery of potential flaws

that lead to these types of attacks and assist

in designing remediations.

Equally concerning is the number of code

execution vulnerabilities being discovered. This

category includes both remote code execution

and arbitrary code execution exposures that can

lead to a variety of high severity exploits. These

types of vulnerabilities can often be leveraged to

spread malware/ransomware. Since malware is a

significant contributor to many of the high-profile

breaches being reported, the prevalence of these

vulnerabilities should raise some eyebrows as well.

19

What’s old is new again

The Open Web Application Security Project (OWASP) was founded

in 2001 with the goal of helping developers and organizations create

secure applications that could be trusted. In 2003, OWASP published

its first Top 10 list of common web application security risks. The list

provided categories of common types of vulnerabilities that impact web

applications. Since that time, OWASP have published periodic updates

to the list, most recently releasing a version in 2017.

A number of the categories that appeared on that first list in 2003

remain on the list today, among them is cross-site scripting (XSS).

Cross-site scripting has been one of the most commonly discovered

vulnerabilities across applications for more than a decade. As we see in

this report, that trend continues even today.

XSS is a vulnerability that can have a wide range of impacts. It allows

attackers to inject malicious browser-side script that is executed when

unsuspecting users visit a site. These attacks can vary from simple

defacement or functionality manipulation to theft of session identifiers

leading to session hijacking.

The primary strategy for preventing and/or remediating XSS

vulnerabilities in applications has not changed since it first was

reported on the OWASP Top10 list in 2003. Properly validating

and/or sanitizing all data received from the user’s browser is the

most effective way to ensure that applications are free from these

vulnerabilities. However, that is a solution that is much easier stated

than it is implemented.

Numerous safeguards have been implemented in development

ecosystems and newer browsers to help prevent successful attacks

based on XSS vulnerabilities. However, the presence of XSS

vulnerabilities as the most reported form of application weakness

in 2019 is evidence that these controls are not being implemented

consistently or not completely effective. Therefore, it is still incumbent

on the developer to be aware of these attack vectors and not assume

that their dependencies have enabled proper protections.

All rights reserved. 2020 © Snyk 20

Vulnerability impacts in 2019

Understanding the prevalence of various forms of security

vulnerabilities within open source packages and libraries is only one

piece of the security picture. We dug deeper to look at the overall

impact of vulnerabilities across the open source community and

within projects that rely on open source dependencies.

Looking at vulnerabilities reported in 2019, the top ten vulnerability

titles follow pretty closely to what we see in terms of the overall

trends discussed in the previous section. In 2019, cross-site scripting

vulnerabilities remained at the top of the list as the most commonly

reported vulnerabilities.

However, what is particularly interesting to note, is that the second

most common vulnerability identified were malicious packages.

These are situations where a typically known and trusted package

has been contaminated with an attack payload or a package

intentionally designed and released with an attack payload built into

it. We will talk more later about how developers and organizations

attempt to understand the health and trustworthiness of their

software dependencies. For now, this trend suggests that the threats

are significant and efforts to improve our understanding of package

health are important.

Top 10 vulnerabilities of 2019

20%0% 10% 15%5%

13%

3%

5%

3%

18%

5%

Malicious Package

Denial-of-Service (DoS)

Cross-site Scripting (XSS)

Arbitrary Code Execution

7%Information Exposure

2%

2%

3%

Cross-site Request
Forgery (CSRF)

Remote Code
Execution (RCE)

Insufficiently Protected
Credentials

Directory Traversal

Deserialization of
Untrusted Data

Malicious packages, either

intentionally designed as

malicious or trusted packages

that have been contaminated,

were the second most reported

vulnerability in 2019

All rights reserved. 2020 © Snyk 21

How do these vulnerabilities translate into their

impact on software projects? Analyzing this question

is of particular importance as it demonstrates how

widespread the attack exposures are in the software

community. Vulnerabilities are less of a risk if the

affected packages are only used in a handful of

projects. However, when a vulnerability is reported in a

highly popular package affecting thousands of projects,

that creates a higher probability of that vulnerability

being exploited by attackers.

To that end, we examined the number of

vulnerabilities that were identified in the hundreds

of thousands of projects that have been scanned and

monitored by Snyk. The results were quite interesting

in the story they tell. Despite the high prevalence of

cross-site scripting vulnerabilities being reported,

those vulnerabilities only impacted about 6.7% of the

projects scanned.

Prototype pollution is one potential vector through

which attackers can introduce malicious code into

otherwise trustworthy packages. The prevalence

of prototype pollution across so many projects is

likely a result of multiple high-profile vulnerabilities

discovered in 2019.

The first vulnerability was discovered in jQuery

and disclosed via HackerOne. Given the relative

popularity of jQuery, a significant number of

projects were affected.

Conversely, the top vulnerability

currently impacting scanned

projects is prototype pollution in

nearly 27% of all projects.

All rights reserved. 2020 © Snyk 22

In July of last year, Snyk researchers discovered a

prototype pollution vulnerability in the extremely

popular Lodash package. The vulnerability,

CVE-2019-10744, affected all versions of the package

at the time of discovery and as a result, its impact was

very widespread resulting in a very high number of

impacted projects.

Top 10 vulnerabilities of 2019 by project impact

20%

Deserialization of
Untrusted Data

Regular Expression
Denial-of-Service (ReDoS)

Prototype Pollution

Arbitrary Code Execution

17%Denial-of-Service (DoS)

0% 10% 15%5%

18%

7%

10%

5%

27%

9%

4%

3%

4%

Information Exposure

Cross-site Scripting (XSS)

Arbitrary File Overwrite

Remote Code Execution

Access Control Bypass

30%25%

All rights reserved. 2020 © Snyk 23

The differences between which types of vulnerabilities

were reported most often and which types impacted

the most projects brings up an interesting question.

If we understand both the prevalence and impact of

each type of vulnerability, could that help us better

determine which are the biggest threats to software?

We analyzed the top five vulnerabilities from the

previous two analyses and plotted them according

to both their prevalence and their impact on

projects. Maybe somewhat surprising, there were

no vulnerabilities that stood out as having both high

prevalence and high impact. For instance, while there

are a lot of malicious packages reported, very few

projects were impacted by those packages. Conversely,

while there are relatively few reports of deserialization

vulnerabilities, the ones that have been reported

affected a high number of projects.

Vulnerabilities reported vs projects impacted

While fewer than 25 prototype

pollution vulnerabilities were

reported in 2019, they impacted

over 115,000 projects scanned

0

50

100

20k 40k 60k 80k 100k

XSS

Malicious Package

Information Exposure

DoS
RCE Arbitraty Code

Execution
Deserialization of
Untrusted Data

Prototype
PollutionReDoS

250

120k

150

200

Number of projects impacted

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

24

Snyk discovers prototype pollution in Lodash

On July 2nd, 2019, we published a high severity prototype pollution

security vulnerability (CVE-2019-10744) affecting all versions of

Lodash, as the result of an on-going analysis led by the Snyk Security

Research team. An updated version of Lodash (4.17.12) was subsequently

released on July 9th which included fixes submitted by Snyk to

remediate the vulnerability.

Needless to say, a high severity vulnerability in a library as popular as

Lodash affects a large proportion of npm users.

The team proactively opened thousands of automatic fix pull requests

for its users to remediate the vulnerability. The news of this Lodash

security vulnerability came to light merely three months after a

similar prototype pollution vulnerability was reported in the ever-

popular jQuery JavaScript frontend library. Similar to other prototype

pollution vulnerabilities, the implementation of unsafe recursive JSON

merge may result in the ability to tamper with JavaScript’s Object

which influences other data-types through the prototype chain. The

implications of such vulnerabilities can range from property injection

to code injection and Denial-of-Service, depending on the affected

use-case and whether this vulnerability can be exploited.

In the case of the Lodash vulnerability, the function defaultsDeep

could be tricked into adding or modifying properties of

Object.prototype using a constructor payload. The fix included a

safety check to ensure that the global object was not being polluted.

A test case was also added to ensure no future regressions occur.

This vulnerability serves as an example of how direct and indirect

dependencies can amplify the impact of a single security flaw across a

wide population of projects.

At the time, the popular npm library was
used by 4.35 million projects on GitHub

alone. The project had just shy of 40k
GitHub project stars, and the library had
been downloaded over 80 million times

each month.

All rights reserved. 2020 © Snyk 25

Ecosystem vulnerability analysis

Having established a broad understanding of vulnerabilities across the open source community, it also

makes sense to understand how those top ten vulnerabilities impact individual ecosystems. We looked at

the numbers for the top five vulnerability types across some of the most popular ecosystems.

Cross-site scripting (XSS)
Cross-site scripting vulnerabilities topped the list

of newly reported vulnerabilities in 2019. How

did that play out across the ecosystems? As you

might expect, PHP leads the way with the newest

vulnerabilities. Considering the relative lack of

anti-XSS controls built into the ecosystem, it is far

easier for developers to make mistakes or simply

neglect to implement sufficient countermeasures.

Since XSS is largely a web application attack, it is

no surprise that Python and Ruby have relatively

low numbers. Since they are far less commonly

used to implement web applications, it simply

stands to reason that there would be relatively

few instances. The small number of instances

identified in .NET packages available through

NuGet is likely a sign of the significant work

that has been done inside the .NET Framework

to prevent these types of vulnerabilities.

Additionally, the low use of open source

dependencies in .NET is also reflected in the

overall number of XSS vulnerabilities reported.

New XSS vulnerabilities by year

20172016 2018 2019

0

25

50

75

100

PyPIPHP Packagist Maven Central npm

86

23

108

19 19
10

34 37

57

71

30

71

NuGet

21

4 4

125

RubyGems

16
9 6

All rights reserved. 2020 © Snyk 26

Code execution vulnerabilities
Just when one thought it might be safe to talk

about the security posture of .NET applications, we

bring forward the number two leading category of

security vulnerabilities since 2014, code execution

vulnerabilities. Vulnerability reports in 2018 were

dominated heavily, especially in the .NET ecosystem,

by prominent remote code execution vulnerabilities.

While things improved in 2019 considerably (even

in comparison to 2017 when over 75 vulnerabilities

were reported) it is clear that this ecosystem has had

a significant contribution in making arbitrary and

remote code execution a prominent category.

Java and PHP for their part are not immune to these

issues either, while Node.js and Python experienced

far less activity in reports for this vulnerability type.

New code execution vulnerabilities by year

0

25

50

75

100

PyPIPHP Packagist

18
10

28

12
8

Maven Central npm

29
36

26

4
1013

22

34

9 13 16

NuGet

1

70

125

49

125

20172016 2018 2019

All rights reserved. 2020 © Snyk 27

Denial-of-Service vulnerabilities
Denial-of-Service (DoS) attacks are one of the more frustrating risks that organizations face. They can be some

of the most difficult to defend against and hardest to troubleshoot when they occur. Over the past three years

and, in particular, in 2018, there were significant discoveries of Regular Expression DoS attacks in the Node.

js ecosystem. Thankfully the number of new vulnerabilities in 2019 fell considerably. Java saw a similar decline

after some notable flaws in 2018 and .NET has shown similar reductions as well—good news for the operations

folks who are trying to keep pace with what can be an overwhelming threat landscape.

New Denial-of-Service vulnerabilities by year

0

25

50

75

100

PyPIPHP PackagistRubyGems

13
8

11

2
11

Maven Central npm

42

31

42

27

87

42

12
4

13
19

24

NuGet

7

33

24

11
4 5 6

1

20172016 2018 2019

All rights reserved. 2020 © Snyk 28

Information exposure
As the name would suggest, this category describes application vulnerabilities that lead to the exposure

of sensitive information. The Java ecosystem, over the last couple of years, has been hit by a number of

vulnerabilities related to Jenkins plugins that have created potential exposure of sensitive information.

New information exposure vulnerabilities by year

20172016 2018 2019

0

20

40

60

80

pipcomposerrubygems

7
1 3

99

26

12
17

maven npm

37

29

66

1

10
4

11

2

20

4

65

6

golang

6
21 0

All rights reserved. 2020 © Snyk 29

Directory traversal
Attacks that exploit directory traversal can be particularly damaging as the impact

of such an attack can be varied and extensive. In some cases, such an attack

simply arms the attacker with additional information about the system that they

can leverage to build more complex exploits. In more serious instances, however,

when an attacker is able to exploit a directory traversal vulnerability, it can lead to

significant exposures—potentially including system-level credentials.

As you can see, vulnerabilities in Node.js disclosed in 2017 and 2018

account for the bulk of these vulnerabilities and why this category is

prominent over the last several years. Outside of those large spikes in

activity, the overall numbers of new vulnerabilities within this category

are fairly low and, as a result, potentially indicative of improved

countermeasures and overall developer awareness, as well.

New directory traversal vulnerabilities by year

0

50

100

150

200

pipcomposerrubygems

0 2 3 61 53 3

maven npm

23
7

20
4

146147

31 6 1
11 18

nuget

1 02 1

20172016 2018 2019

All rights reserved. 2020 © Snyk 30

SQL injection
It is interesting to notice that SQL injection is not in

the top ten (let alone the top five). However, given the

potential impact of successful SQL injection exploits—

and some notable past breaches that leveraged SQL

injection vulnerabilities—its absence from the top ten is

potentially very encouraging. For that reason, we decided

to take a look quickly to understand if the data paints the

same happy picture as one might expect.

The reality of the data is a mixed set. The continuing

reduction of SQL injection vulnerabilities in the Java

ecosystem is certainly a very good sign. However, not

so when it comes to PHP where the number of new

vulnerabilities is increasing.

While the overall numbers are still very low, this could

point to a trend that will be worth watching in 2020.

In a somewhat encouraging sign, other ecosystems we

investigated did not have significant numbers of SQL

injection vulnerabilities reported, and therefore, were not

included in our analysis.

New SQLi vulnerabilities by year

0

5

10

15

20

PHP PackagistMaven Centralnpm

3

0

4 4
5

8

2

6

16

4

10

1

20

20172016 2018 2019

3Addressing infrastructure and
container security risk

Containers have become almost ubiquitous in cloud environments, especially within

DevSecOps pipelines. The distinct advantages of running software in dedicated, often

Linux-based containers have given developers more flexibility and control over the

deployment of their applications and microservices. Orchestration with Kubernetes

has further enhanced those advantages by creating operational environments that are

easily launched in highly resilient configurations.

Of course, as is the case with all technologies, containers have introduced their

own unique challenges and threats from a security perspective. As the open source

community creates and shares images and Kubernetes configurations, vulnerabilities

that exist within them become a part of our operational environments. Last year

we highlighted some key concerns in this space, so for this year, we revisited those

findings to see how things have changed.

All rights reserved. 2020 © Snyk 32

Security in Linux distributions

Most popular container images are based on some

flavor of Linux meaning that vulnerabilities that

impact popular Linux distributions have a direct

impact on the security posture of the containers that

leverage them. For this year’s report, we turned to

the MITRE CVE Database and looked at the number

of reported vulnerabilities that impacted four of the

more popular Linux distributions. Unfortunately,

we had to omit RedHat from this particular analysis

as a result of limitations of the data that we could

retrieve from the CVE database.

New vulnerabilities impacting Debian have shown

a significant decline over the last two years, after

peaking at over 1,300 in 2017. Where the reverse

is true for Fedora and SUSE whose count of new

vulnerabilities has grown over the past couple years.

The important lesson from these numbers, however,

is not really in the trends.

The overall number of vulnerabilities being

reported each year serves as a reminder of how

diligent operations and security teams need to be

in monitoring what Linux distributions are in use

across their environment.

Obviously, with developers pulling, customizing,

or in some cases building container images, this

is an increasingly difficult task. This highlights

the need for tooling and processes that can

comprehensively identify and monitor for new

vulnerabilities in all installed libraries within each

container image.

New Linux vulnerabilities by year

0

500

1000

2015 2016 2017 2018 2019

1500

UbuntuFedoraDebian SUSE

UbuntuFedoraDebian SUSE

UbuntuFedoraDebian SUSE

UbuntuFedoraDebian SUSE

33

The security cost of open source

As one of the largest commercial vendors of open source

software, Red Hat is aware of the many security challenges

around consuming and using open software. In 2019,

there were over 1400 vulnerabilities reported in Red Hat

Enterprise Linux alone [1]; for reference that is versions 5

through 8, and version 8 ships with over 2300 packages

itself[1]. This is why Red Hat puts considerable effort into the

security tracking, triage and assessment of those packages

shipped in our products. It narrows the aperture for Red Hat

users to focus on those third-party components someone

might install on top of our platforms, meaning there is less

to track, triage, and understand.

Open source software doesn’t sit idle. Every day there is new

software created that can be used to extend or enable new

functionality. This is the beautiful thing about open source—it

continues to grow and improve, allowing consumers to build more

useful and sophisticated technologies with reduced overhead in

development. There is a cost though, and that is diligence. With

the rate of change and improvement to open source software, that

new code being created every day has the potential to introduce

new vulnerabilities.

You see that in communities that explode in popularity, such as

npm for example, or other communities that undertake audits or

begin to report more diligently on security issues. This is where

you will often see surges or spikes in vulnerabilities in a particular

ecosystem. It doesn’t mean the software is bad or insecure,

typically it means it’s active as discovered vulnerabilities are often

the sign of a healthy ecosystem.

Guest analysis by Vincent Danen, Senior Director, Product Security at Red Hat

[1] https://www.redhat.com/cms/managed-files/rh-2019-risk-report-overview-f21332wg-202003-en_0.pdf

https://www.redhat.com/cms/managed-files/rh-2019-risk-report-overview-f21332wg-202003-en_0.pdf
https://www.redhat.com/cms/managed-files/rh-2019-risk-report-overview-f21332wg-202003-en_0.pdf
https://www.redhat.com/cms/managed-files/rh-2019-risk-report-overview-f21332wg-202003-en_0.pdf

All rights reserved. 2020 © Snyk 34

Docker images

Exploring deeper into the open source container

community, we looked at the security posture of 10

of the most popular container images on Docker

Hub. These official images are some of the most

often pulled, and provide developers with a quick

and easy way to run those applications.

The most popular images tend to be those tagged

"latest" and these images are often designed to

handle the broadest set of use cases for a particular

language or application. With that in mind,

they often come with a range of packages and

development tools that make it very easy to install

and run your code and all its dependencies.

 Last year’s analysis showed that these popular

base images had many vulnerabilities, and so,

in revisiting the analysis this year, we wanted

to make the comparison to see how things had

changed. We pulled the image tagged "latest"

for each of these containers and scanned them

using Snyk.

Vulnerabilities in official container images

61

580

85

0

100

600

700

89

69

nginxnode postgres mongohttpd mysql rediscouchbase memcached ubuntu

30

61
4747 4755

642

83
72 66

0

67
5057 50

20192018

All rights reserved. 2020 © Snyk 35

The results closely matched what we discovered

last year and, in some cases, the results showed

even more vulnerabilities this year. The latest node

image (14.3.0-buster at the time of our analysis), for

instance, has 642 known vulnerabilities.

Breaking it down further, the base image contains

17 high and 139 medium severity vulnerabilities. The

high severity vulnerabilities stem, in large part, from

the version of Debian on which the image is based

and span many different libraries, including image

processing and database connectors. All of these

included packages likely make the "latest" image

easy to use, but may not make it the best to use.

Further analysis shows that slimmer base images

that include fewer libraries also have fewer overall

vulnerabilities. For instance, the node base image

14.3.0-buster-slim has only 47 vulnerabilities,

of which 0 are high severity and only 4 are

medium severity since it does not include many

of the vulnerable libraries that are in the

14.3.0-buster image.

These findings mimic what we saw in last year’s

report. For developers, the implications are pretty

clear.. It is important that developers are aware of

the risks that are inherent to using images retrieved

from public repositories, even when they are listed

as official images.

And developers should follow container best

practices, which include using slimmer base

images; ensuring you rebuild your images

when the official images get updated so you get

the latest security fixes; and using processes

like multi-stage builds that can help separate

development packages from production

packages and slim down the final image in an

automated fashion.

Project name: docker-image|node
Docker image: node:latest
Base image: node:latest
Licenses: enabled

Tested 412 dependencies for known issues, found 642 issues.

Base Image Vulnerabilities Severity
node:latest 642 17 high, 139 medium, 486 low

Recommendations for base image upgrade:

Alternative image types
Base Image Vulnerabilities Severity
node:14.3.0-buster-slim 47 0 high, 4 medium, 43 low
node:14-buster 291 2 high, 60 medium, 229 low
node:14-slim 68 6 high, 7 medium, 55 low

All rights reserved. 2020 © Snyk 36

Kubernetes security

As many organizations look to leverage container-

based infrastructure solutions, using Kubernetes to

orchestrate and manage those containers is a likely

next step. In our survey, over 44% of the participants

indicated that they are currently using Kubernetes to

orchestrate their containers.

But how are they ensuring the security of their

Kubernetes manifests—we wondered. So we asked!

Only 28% of those that use Kubernetes stated they

have any form of automated tooling to review the

configurations of their Kubernetes clusters. Worse,

over 32% said they didn’t know or don’t have any

practices in place. Manual configuration reviews of

their YAML/JSON manifests or Helm Charts was the

most common practice.

Securing Kubernetes Clusters

Doesn’t use KubernetesUses Kubernetes

0% 20% 40%

30%

28%

42%Manual review of YAML/JSON
or Helm Charts

Manual audits of
production clusters

Automated configuration
reviews

Other

I don't know/None of these

7%

31%

10% 30%

44%

56%

50%

44% of survey participants

indicated that they use

Kubernetes to orchestrate

their containers.

All rights reserved. 2020 © Snyk 37

There are numerous key configuration decisions

that can be made when defining a Kubernetes

cluster that have a direct impact on the security

of that cluster. The impact of failing to implement

key controls can also be felt in terms of the costs

associated with cloud environments in which

these clusters are hosted. Validation that these

configurations are in place can be easily achieved

by automated reviews of the configuration files

before deployment in a production environment.

Additionally, tooling is available that can analyze

active clusters for insecure configurations as

well. Given the potential impact of insecure

configurations, the importance of those reviews

cannot be overstated.

In our survey, we asked the participants about

some of the more common configuration strategies

that can be employed to help secure containers

managed via Kubernetes. Of those that reported

they use Kubernetes over 50% reported using both

memory and CPU limits to manage their containers.

However, restrictions on the use of vulnerable or

unnecessary kernel modules were not very common.

Audit logging was also not particularly common.

Nearly 32% reported they were not sure or

did not leverage any of the possible controls we

asked about.

The results seem to indicate a greater focus

on the aspects of the configuration that affect

availability and capacity while the more security-

related features receive less attention. This would

mirror a common progression of behaviors in new

technology when the security of the technology is

not made a primary concern early in the adoption

of that technology.

Kubernetes resource controls

40%

36%

55%

54%

Memory limits

CPU limits

Non-root container context

Restricted network access

Audit logging

Kernel module blacklists

32%

15%

I don’t know/none of these 32%

Less than 40% of survey

respondents verify common

security-related Kubernetes

configuration options.

Multiple responses allowed.

All rights reserved. 2020 © Snyk 38

Helm security

Helm is the most popular package manager for

Kubernetes. As part of moving to Kubernetes, many

organizations use Helm as the tool for deploying

in-house or third-party applications. In our survey,

over 40% of the respondents who said they use

Kubernetes also indicated that they leverage Helm.

But what are the security implications of using

Helm? A common risk that must be considered

when installing a third-party Helm chart is the

potential of introducing a vulnerable image in your

cluster. In our 2019 Helm report, we found that 68%

of stable Helm Charts contain an image with a high

severity vulnerability. Here are the different types of

vulnerabilities we found:

Helm vulnerability types

9%

30%

4%

7%

35%

7% 8%

Other

Cryptographic Issues

Improper Input Validation

Resource Management
Errors

NULL Pointer Dereference

Access Restriction Bypass

Out-of-Bounds

4Security and vulnerability
management practices

As development ecosystems evolve and the use of open source packages becomes

increasingly prevalent in software development, organizations need to employ key

strategies for how they become aware of and react to vulnerabilities. Analysis of

the state of open source security would be incomplete if we did not consider how

organizations are addressing the threats that the use of open source introduces.

All rights reserved. 2020 © Snyk 40

Security as a culture

Software development has evolved considerably over

the past decade. The adoption of DevOps/DevSecOps

software delivery pipelines has forced software

development organizations to think very differently

about the development lifecycle. In particular,

security practitioners have been challenged with

ensuring secure practices while not inhibiting the

improved efficiency of software delivery that sits at

the very core of the DevOps model.

In DevOps/DevSecOps software delivery we have

multiple motions. Developers pushing further

right into the delivery pipeline, owning tasks from

development through deployment. The ability to

define the infrastructure on which their software

will run via containers and other code defined

infrastructure has enabled this transition. Meanwhile,

as has been the case for decades, security continues

pushing further left. Bringing security considerations

to the development process early is recognized for its

ability to, not only reduce risks but costs as well.

Finally, the operations are being driven to

move up higher in the infrastructure stack as a

result of increased use of virtualization

technologies, software-defined infrastructure, and

orchestration platforms.

As technology changes and development

accelerates, delivering secure software requires a

culture that emphasizes shared responsibility for

the security, stability, and efficiency of the software.

In last year’s report, we asked survey participants

to identify who is responsible for security in their

organization. As one might expect, 81% identified

developers as having a responsibility for security.

Surprisingly, however, only 28% identified the

security team as having responsibility, while only

23% said the responsibility lies with operations.

Perhaps cynically, 12% of the participants said the

responsibility to security belongs to nobody.

This year we decided to dig a little deeper

into how organizations are doing in driving

a culture shift that embodies security as a

core responsibility for all members of the

organization. We asked our survey participants

who they felt should be responsible for

designing and implementing security controls

in their software, as a multi-answer question.

The results were more encouraging this time

around but curiously a lot of weight continues

to be put on the developers’ shoulders.

All rights reserved. 2020 © Snyk 41

Not only is it not fair to ask developers to shoulder

so much responsibility for software security, it is also

counterproductive. Developers need to be enabled

to do their part, but security teams need to drive

that enablement, and operations needs to be a part

of actively monitoring it as well. So, while this year’s

results are encouraging and do show growth, there

is clearly more work to be done in this area.

When we asked the participants about the

security of their infrastructure, however, we found

that the results were much more balanced—

Operations teams were commonly identified but

so were Developer and Security teams in almost

equal numbers.

However, the fact on this multi-answer question

the responses were all less than 65% still indicates

that respondents did not typically identify all three

groups as being responsible. Again, this indicates

that more work can be done in shifting toward a

shared-responsibility culture.

Who should be responsible for security?

2%

63%
56%

0%

25%

50%

75%

100%

56%

3%

OperationsDevelopers Security team NobodyOther

85%

55%

35%

3% 2%

InfrastructureSoftware

Multiple responses allowed.

42

Securing the pipeline

Continuous integration (CI) is the foundation of software

development. CI defines the automated steps for building,

testing, and deploying software. It is essential for developing

software in a time when constant change is the norm.

CI provides the ability to automate in minutes what was

historically a process requiring manual approval steps that could

take months to execute.

Teams using CI measure the success of their development process

by four key metrics:

 à lead time for changes

 à deployment frequency

 à mean time to recovery

 à change fail percentage

All of these metrics reflect an emphasis on speed. Speed is

incredibly valuable in software delivery, but should it come at any

cost? Speed without reliable, consistent quality is not helpful. And

speed without security is even worse.

We noticed two things from Snyk’s State of Open Source Security

Report 2020 that stood out to us. The first is that, increasingly, survey

respondents feel that security for software and infrastructure should be

shared among development, security, and operations teams. This cultural

shift in the ownership of security is represented in the shift from DevOps

to DevSecOps and CI is the centralized place where these teams are able

to come together. By adding security to DevOps, teams are able to reap

the benefit of speed that comes with automation, and they don’t have to

sacrifice security in the process.

The second thing that stood out to us was the number of vulnerabilities

in official base images. Containers are a central technology for CI. In a CI

pipeline, when a codebase is updated, the applications are run in clean

containers that use images that contain all the tools and packages needed

for the app. To benefit from CI, managing vulnerabilities in images is an

absolute necessity. Even for organizations that create their own custom

images, Snyk’s State of Open Source Security Report 2020 has identified

that official base images—the image from which custom images are

created—have many vulnerabilities. The official Node image with the

latest tag has almost 700 known vulnerabilities!

While speed is certainly a valuable metric to consider when developing

software, consistent quality and security are also necessary for ensuring

that the software we develop meets the expectations we set for ourselves

and the expectations of our users.

Guest analysis by Ron Powell, Technical Content Marketing Manager at CircleCI

All rights reserved. 2020 © Snyk 43

There are many different approaches that

organizations may use to create a culture of shared

responsibility. One of the more commonly discussed

approaches is establishing a Security Champions

program. The goal of such a program is to bring

security expertise to the development organization.

These programs establish roles in the development

team to create a community of security-minded

developers. Security Champions programs are even

referenced as security practices at the base maturity

level in the OWASP SAMM model.

We asked our survey participants about some of

the more common approaches to establishing

this type of culture and bringing security into the

development conversation. Despite the increasing

adoption of DevOps/DevSecOps software delivery, a

staggering 47% of organizations indicated that they

have not implemented any of these practices.

Programs to drive shared responsibility culture

0% 20% 40%

16%

5%

Stand up meetings with
Dev, Sec and Ops

Cross training across
Dev, Sec and Ops

Security champions program

No, none of these

15%

47%

10% 30% 50%

17%
Dotted line reporting between

Dev, Sec and Ops

Multiple responses allowed.

44

Creating a culture of shared security
responsibility at Segment
On a recent episode of The Secure Developer podcast, Leif Dreizler and

Eric Ellett talked about the importance that customer data platform

provider, Segment, places on the collaboration between development,

security, and operations resources. Segment does not do sprints across

their organization—instead, teams operate independently.

However, through a consultative model, the security team is still

integrated early in the development process to provide threat model

and design review capabilities.

At Segment, the idea of establishing empathy is baked into the culture

of the security team. Within the team, Segment has employed a

concept of “Walk a mile in the developer’s shoes”. Ellett explained

that the security team goes to great effort to understand how their

security processes impact other areas of the organization. For instance,

when they sought to roll out Multi-Factor Authentication, Dreizler

spent a quarter embedded with the development team. This provides

the security team with invaluable context on the challenges that the

development team faces in terms of what they are trying to protect.

However, the collaboration focus doesn’t end there. Ellett explained

that there is the intention that similar initiatives would happen in

the other direction. The plan is to bring people from other areas of

the organization to sit with the security team and understand their

world as well. Dreizler stated, “I think that this is what the goal of

DevSecOps should be. Similar to DevOps, where you have operations

people learning how to code and now everything at Segment’s

infrastructure is code.”

Segment also firmly believes in creating the “paved road”. A guiding

principle that the Segment security team operates under is “would

this tool be used by the developer?”. In other words, there is a keen

focus on ensuring that the adoption of security controls is enabled

by the ease of use. The ultimate focus, according to Dreizler, is “just

make it as easy as possible for people to do what the right thing is.”

Through this cooperative and empathetic approach, Segment

has been able to grow a strong culture of collaboration in their

organization—an example of how the promise of DevSecOps can be

realized by ensuring all functions are aligned in their goal to do what

is right for the organization.

All rights reserved. 2020 © Snyk 45

Evaluating package health

A topic of growing conversation across the open

source community is how to determine the health

of packages. Understanding how actively and

attentively a package is being maintained and

updated timely with security fixes sounds like an

easy task. However, when the possible metrics for

measuring health are considered and analyzed,

it becomes clear that this is a harder question to

answer than it would seem.

The various code repositories have attempted to

help with this and do offer some useful tools that

can provide some indication of which packages are

trustworthy. Publishing things like issue counts,

revision histories, pull request details, and even

user feedback mechanisms all provide some level of

reassurance. However, none of these by themselves

tells a reliable story. For instance, while frequent

updates to a package can be an indication of an

actively maintained package (which is a good thing),

excessively frequent package updates could have

a negative impact. Maintenance of applications

that are dependent on that package could be

complicated by having to initiate more frequent

changes to apply the latest versions of the updated

package. This is of particular concern where the

updates introduce security-related fixes that need

to be applied in a timely fashion.

In our survey, we explored what factors are

commonly used to evaluate and ultimately select

open source packages.

Our results were also consistent with the

idea that there is no single generally accepted

answer to this dilemma. It is, however,

encouraging to see that numerous practices are

being adopted and most participants indicated

that they use more than just one factor on

which to base their decisions.

How do you vet open source packages?

80%

Project has an active community

0% 40% 60%20%

59%

58%

65%

21%

6%

53%

Repository ratings or download counts

Frequencey of releases/commits

Check for known security vulnerabilities

Other

Check for Responsible Disclosure Policy

Multiple responses allowed.

All rights reserved. 2020 © Snyk 46

Container image health

Earlier we discussed some of the vulnerabilities

found in the most popular base images on Docker

Hub. So, with more and more organizations turning

to container technology, how are organizations

going about ensuring the base images they select

are secure?

Many of the same complexities and considerations

that affect decisions about package health also

come into play with container health. As we saw

earlier, simply being labeled as an “official image”

on Docker Hub does not mean there are no

vulnerabilities. What about feedback from others?

Do ratings offer reliable measures? All of these issues

and more need to be considered when attempting to

select a secure image for your next deployment.

We asked the respondents to our survey about

the potential criteria they use when selecting base

images. The use of well-documented images and

smaller lightweight images were the two most

common practices.

Good documentation assures that developers

can understand what components are included

in the image which in turn enables the selection

of an image with only the appropriate modules

necessary to support the code that will run in

the container.

How do you evaluate container security?

36%

24%

56%

41%

Only use well
documented images

Prefer smaller or
lightweight images

Recommendations
from others/reviews

Operating System
Preferences

Ability to authenticate
packages (e.g., dpkg sig)

None of these

17%

21%

Multiple responses allowed.

All rights reserved. 2020 © Snyk 47

Security practices

Almost every software development organization

understands that some level of security focus needs

to be included in the development process before

code is deployed. There is a wide variety of practices

that security practitioners recommend and different

organizations may implement one or many of them.

From a security perspective, each practice serves a

different purpose and so the recommendation is to

implement all of them. However, the reality is that

the decision to build a particular security practice

into the pipeline is complex and involves not only

organizational maturity and risk tolerance, but also the

ability of the delivery model to adapt to these activities

without introducing obstacles to development.

The mantra of pushing left—that has been a part

of the application security vocabulary for many

years—often focuses on the ability to reduce friction

and cost by identifying vulnerabilities early in

the development process. To that end, it isn’t too

surprising to see that the use of Static Application

Security Tools (SAST) is the most common activity

across our survey participants.

Over 1 in 4 responses

indicated no common security

practices are in place.

All rights reserved. 2020 © Snyk 48

There are two concerning numbers in these results

though. First is that almost 26% of the participants

indicated that they do not have any of the listed

security practices implemented in their delivery

pipeline. With security continuing to be a top-of-

mind concern for executives across most industries,

it is surprising that over 1 in 4 responses indicated

no common security practices are in place. Second

is the relatively low use of Software Composition

Analysis (SCA). Earlier we detailed the risks that

open source dependencies, and in particular indirect

dependencies, post to software development. SCA

is a powerful way to understand the dependencies

of an application, identify if there are vulnerabilities

in those dependencies, and enable monitoring of

future vulnerabilities in an organization’s software.

Security practices in the delivery pipleline

40%

Static Code Analysis (SAST)

Security test cases in QA

0% 20% 30%10%

20%

57%

19%

28%

8%

26%

19%

Software composition analysis

Dynamic Application
Security Testing (DAST)

Threat modeling

None of these

Other

60%50%

Multiple responses allowed.

All rights reserved. 2020 © Snyk 49

As organizations adopt DevSecOps, automation and

tooling become key topics to help enable efficient

delivery. In particular, when attempting to shift

security from being a gate between delivery stages

to being integrated into those stages, automation

becomes crucial. Automated tools help eliminate

slow feedback cycles that create friction for

development and fail in adoption because they are

simply too inhibitive of efficient development.

In our survey, we asked our respondents whether

they had enabled any automated security testing

capabilities in their delivery pipelines. The results

are encouraging in that many identified multiple

capabilities. However, at the same time, over 38%

indicated they have no automated capabilities. In

light of the 26% who stated they have no security

practices in place, this number isn’t too shocking.

Automated security testing capabilities

0% 20% 40%

49%

42%

Tests for known open
source vulnerabilities

Static source
code analysis

Tests for vulnerable
container images

No automated testing

39%

27%

10% 30% 50%
Multiple responses allowed.

38% of survey participants

have no automated security

capabilities. 26% have no

security practices in their

pipelines at all.

All rights reserved. 2020 © Snyk 50

Vulnerability remediation

It seems obvious, but it is not simply enough

to identify vulnerabilities in software—timely

remediation of vulnerabilities plays a key role in

reducing overall security risk. When it comes to

open source, however, remediation can be a more

complex issue.

When vulnerabilities occur in the software you’ve

developed, the answer to remediation is simply to

fix the code. However, when the vulnerability is in

a direct open source dependency, the answer may

be more complex. There may be an updated version

of that package in which the vulnerability has been

remediated that you can include in your code—

one-line change in your dependencies could be all

it takes. However, if there’s not an updated package

with a fix, the options are a little more complicated.

One option is to fix the code yourself. Hopefully,

you would also submit the changes back in a pull

request to the maintainer, thus making the package

more secure for all. Another option would be to

open an issue with the maintainer and wait for them

to make a fix.

Of course, these decisions can get even more

complicated when the vulnerability is in an

indirect dependency.

The point of this discussion is not to bemoan the

complexity and risk of open source security, but

rather to understand that these various factors

and approaches to remediation can have a direct

impact on how quickly organizations are able to

respond to a vulnerability.

Open source vulnerability
expectations
In our survey, we asked participants to share

with us what their expectations are for package

maintainers to address security vulnerabilities

within their packages. Most said they would

expect a fix in a week or less from the time the

vulnerability is reported.

Expectation for open source vulnerability fixes

Release

8%

A few
hours

18%

A day or less

A week or less

47%

A month or less

18%

1-3 months

6%

More than 3 months

3%

All rights reserved. 2020 © Snyk 51

Remediation performance
The speed at which vulnerabilities get remediated

once they are discovered is a constant concern of

any mature vulnerability management program.

Shorter vulnerability remediation timelines equate

to reduced risk for the organization.

We investigated the monitoring of vulnerabilities

that were discovered in projects scanned by Snyk

to determine just how long it takes organizations

to respond and remediate the issues once they’re

identified. Of course, as discussed previously, the

speed at which a development team can remediate

a vulnerability in an open source dependency is

reliant on a number of factors, some of which are

outside the control of the organization. Still, it is

important to understand just how well organizations

are able to react when a vulnerability notification

comes through.

Vulnerabilities fixed in projects scanned

Fixed after 70 Days36%

Fixed 20-70 Days29%

Fixed <20 Days34%

Fixed same Day1%

A little more than one-third of

vulnerabilities are fixed within

20 days of being discovered

All rights reserved. 2020 © Snyk 52

What is particularly interesting about the results is

the percentage of vulnerabilities that are successfully

remediated in under 20 days. For most vulnerability

management programs, that is a very high success

rate. It’s also interesting to note that some

vulnerabilities are even remediated on the same day.

On average, however, most vulnerabilities take over

two months to be remediated, suggesting that there

is more work to be done. Seeing that some have

gone as long 16 months before they are remediated,

confirms that we can improve as a community in

how we address security vulnerabilities.

However, it is important to note, when

considering these numbers, that the severity

of the vulnerability is not taken into account in

this analysis. A common practice in vulnerability

management programs is to set remediation

timelines based on the severity of the identified

vulnerabilities. Therefore, one can hope that those

vulnerabilities that took significantly longer to be

remediated are lower severity, and were therefore

not prioritized for remediation as quickly as higher

severity items. However, a much deeper analysis

would be needed to confirm if that is the case and

such analysis was beyond the scope of this study.

All rights reserved. 2020 © Snyk 53

Maintainer security performance

It is no secret that one of the greatest

contributing factors to the state of open source

security is the ability of maintainers to produce

secure code and to remediate security issues

quickly once they are reported.

Vulnerability remediation
Just as we did last year, once again we looked

at the percentage of known vulnerabilities in

key ecosystems that had been remediated in

subsequent versions of the package. The results

are a mixed bag of good and bad news. In the

Node.js space, 63% of disclosed vulnerabilities

have fixes available—up from 59% in the previous

year. That is good news.

But what happened with Java? Last year Java

boasted an impressive 97% of vulnerabilities

addressed with known fixes. However, in this

year’s analysis, that number has dropped off

considerably to slightly less than 81%. Python

and Ruby for their part have remained relatively

consistent year-over-year.

Packages with known fixes

0% 50% 100%

63%

81%

96%

84%

PyPI

RubyGems

npm

Maven
Central

25% 75%

All rights reserved. 2020 © Snyk 54

Maintainer vulnerability
awareness
Perhaps some explanation for the numbers of

vulnerabilities with available fixes can be found

in an analysis of how maintainers become

aware of vulnerabilities in their software in the

first place. In the survey, we asked how project

maintainers become aware of new vulnerabilities

in their code.

There are many ways in which new vulnerabilities

would be identified. Certainly, the preference

would be that maintainers of the code identify

the vulnerabilities themselves through some form

of code review or analysis. Indeed, the majority

of participants indicated that this is one way they

find vulnerabilities. External audits were also a

popular answer. Disclosure by external parties

ranked lower on the survey perhaps suggesting

that most maintainers are more proactive about

discovering vulnerabilities.

Compared to last year’s results for the same

question, there are some positives and some

negatives in this data. The percentage that

indicated they would find the vulnerabilities on

their own dropped from 72 to 67 percent. However,

that may be offset by the number that indicated

external audits as the source of information which

climbed from 30% last year to almost 50% this year.

Also encouraging is the percentage of

responses that stated they don’t find out about

vulnerabilities in their code. That number

dropped from 17 to 12 percent this year.

How do you find out about vulnerabilities in
your code?

80%

When I review my code

0% 40% 60%20%

48%

31%

67%

11%

12%

25%

Someone contacts me direclty

Through an external audit

Someone opens a public issue

I don't

Other

Multiple responses allowed.

All rights reserved. 2020 © Snyk 55

Report conclusions

While there were many interesting findings in this year’s report, the following are the five areas that were the

most notable in terms of their impact on the open source community.

 à More than half of survey respondents view

security as a shared responsibility across

developers, security, and operations which is

an improvement over 2019.

 à New vulnerabilities are down 20% across

the most popular ecosystems; npm saw

the greatest reduction in vulnerabilities

disclosed, yet retains the worst fix rate of the

popular ecosystems.

 à Vulnerabilities that have received attention

for many years continue to be reported in

high numbers; however, more complex

and less understood vulnerability types

had higher impact. Prototype pollution, for

instance, affected over 25% of projects

scanned by Snyk in 2019.

 à The top ten most popular official container

images have significant numbers of known

vulnerabilities. Pulling an official image is not

a replacement for regular security hygiene.

 à There are still significant improvements

to strive for as many still don’t treat

security with proper urgency: a third of

vulnerabilities in projects were fixed in

under 20 days, but another third took 70

days or more.

All rights reserved. 2020 © Snyk 56

Recommendations

Based on the trends and themes identified in this year’s report, there are some key next steps that organizations and

package maintainers can take to improve the security of their software.

Open source maintainers

 à Greater emphasis is still needed when it comes

to inventorying open source. Creating greater

visibility into the full dependency tree will

drive proactive vulnerability identification as

well as enabling more effective response to

emerging threats.

 à Education on new vulnerabilities and exploits

for developers must be a priority to reduce the

breadth of impact across multiple projects in

new vulnerability types. Additionally, continued

security hygiene and monitoring is clearly

needed regardless of a package’s perceived

health and popularity.

 à Establish and track metrics regarding

vulnerability remediation to ensure that

expectations and actual achievement can

be reconciled.

Container security

 à Pulling an “official” image does not guarantee

that it is free from vulnerabilities. Regular

security hygiene should be performed for any

new container images used.

 à Minimize container image size. “Latest”

tags often pull the most comprehensive version

of the image. However, in our research we found

that using a “slim” image instead can reduce

the number of vulnerabilities in the image by as

much as 95%.

 à Kubernetes environments offer standard

configuration options that should be default

for any new cluster launched. Limiting root

level access, ensuring audit logging is enabled,

and preventing the installation of known bad

modules are key steps that can be taken.

Organizational security culture

 à Security at all phases of the delivery

pipeline should be seen as a shared

responsibility across the organization.

Establish clear and common goals that

apply to developers, operations, and

security personnel.

 à Launch formal programs such as

security champions, job shadowing, and

daily task integration that drive empathy

and understanding across Dev, Sec, and

Ops disciplines.

 à More comprehensive practices are needed

in DevSecOps pipelines. Look to enable

practices as early as user stories in the

backlog and select automated security

tooling that integrates with existing

development and pipeline management.

Developer first security

There’s a lot of talk in the security industry about shifting left. About how it’s more effective to find

vulnerabilities or security problems early in the process. About the need to scale security as digital

transformation increases the volume and importance of software to every business.

But the reality is, to build a truly effective DevSecOps model, you need an approach that gives developers

the ownership for security, and provide developer-first and friendly tools to enable them to successfully

implement the security responsibility. You need to enable security teams to both support and govern the

development team to manage security effectively.

Developer-first Security

A frictionless and

intuitive security-focused developer

tool enables developer adoption

Empower both developer and security teams to tackle
the application security challenge

Automated Remediation

Actionable fix advice and

automated remediation workflows

make it easy to fix, and not just

find vulnerabilities.

Security depth

Comprehensive, timely, accurate

and enriched vulnerability database

ensures issues are found quickly and

fixed easily.

Visibility and Control

Reporting and prioritization

features enable security teams

to monitor security levels, and

implement and govern policies.

Protected by

Enabling more than 400,000
developers to continuously find
and fix vulnerabilities in open

source libraries and containers.

Open Source Security Container Security License Compliance

London

97 Hackney Road

London E2 8ET

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

200 Berkeley, 24th floor

Boston, MA 02116

Develop fast. Stay secure.

     

Report author

Alyssa Miller (@AlyssaM_Infosec)

Report contributors

Simon Maple (@sjmaple)

Ron Powell (@whyD0My3y3sHurt)

Vincent Danen (@vdanen)

Report design

Growth Labs (@GrowthLabsMKTG)

Report editor

Eirini Eleni Papadopoulou (@Esk_Dhg)

http://snyk.io
https://twitter.com/snyksec
https://www.facebook.com/snyksec
https://www.linkedin.com/company/snyk/
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.instagram.com/lifeatsnyk/
https://twitter.com/AlyssaM_Infosec
https://twitter.com/sjmaple
http://twitter.com/whyD0My3y3sHurt
http://twitter.com/vdanen
https://twitter.com/growthlabsmktg
http://twitter.com/Esk_Dhg

	Button 5:

